
Scripting With Maximo

Anamitra Bhattacharyya [Lead Developer]
Sampath Sriramadhesikan [Lead Designer]

Scripting is a new feature that was introduced in Maximo version 7.5 based on
the feedback from the user community who yearned to have a simpler yet
effective way of customizing the product without having to go through the pain of
system downtime and steep learning curve.

While Maximo provides great many customization points, most of them needs
JAVA coding skills to do any meaningful [logic based] customization. It also
would often need deep knowledge of Maximo apis as well as the Maximo
internals. That can often be a daunting task even for an experienced
programmer.

In comes Maximo scripting to help ease some of these concerns. Maximo
scripting is primarily based on the JSR 223 specification which is part of JAVA 6.
This JSR allows a JAVA application [in this case Maximo] to host script engines
which are compliant to this specification. The engines that are supported in an
OOTB Maximo 75 are

1. Mozilla Rhino (JavaScript) which ships with the IBM/Oracle(Sun) JDK
2. Jython which is included as part of Maximo

This basically implies that users can use either of these 2 scripting languages to
customize Maximo using the Maximo scripting framework. We do understand
that there are other popular JSR 223 compliant scripting engines like
JRuby/Groovy and it should be fairly simple to add support for these by adding
these engines [jars] in Maximo application classpath. The way the scripting
framework is written – it should be able to detect those jars from the classpath
and show them as available languages in the scripting application. However I
would like to mention that at this point Maximo has only been tested with the
Rhino-JavaScript and Jython engines and JSR 223 being fairly new, a lot of the
“compliant” engines may have potential issues with their implementation which
can prevent seamless integration with Maximo.

Now lets get familiar with the different artifacts of the scripting framework. Below
is a figure which can give you a visual feel for the design and run-time artifacts.

Design Time

No

Yes

No

Is there an existing
script?

Identify Maximo
component point to

customize

Create Launchpoint
for that component

point
Select scriptYes

Modify variable
bindings [if needed]

Bind Variables Author/Edit
Script Commit Design

Commit Design

Database
Compile Error?

Attach Launcpoint
Proxy to target

Maximo Component
Compile

Script

Cache
Compile
d Script

Based on this design flow chart we can see that there are 3 distinct artifacts –
Launchpoint, Script and Variables which make up the framework.

Script

First of course is the script which is a text file that you can edit inside Maximo or
outside of Maximo [in your choice of editors and import back into Maximo]. Every
script has an associated attribute – scriptlanguage which helps the run-time
figure out the appropriate script engine to invoke for processing the script. The
value list for available script languages come from the providing script engines in
the classpath. Its common for script engines to provide multiple alias or short
names for the language support provided by that engine. For example the jython
engine provides 2 names – jython and python – both referring to the same
engine/script language. Selecting either one is fine and produces identical
behavior. Most engines support script compilation which eventually converts the
script to a executable bytecode [for the JVM]. The ones that we support OOTB –
JavaScript and Jython both support complied scripts. When the deployer is
commiting the design process – in the background the framework would compile
and cache the script. This process is often referred to as generating “hot” scripts
which are ready to execute. Note if there is a compile failure the process will not
commit and the deployer has to fix the script to proceed.

Before we jump further into these artifacts we will look into the application
support for the scripting framework.

Script/Launch point Creation

This is done via wizards launched from the list tab in the autoscript application.
The autoscript application can be launched from the GoTo → System
Configuration → Autoscript menu. In the list tab drop down actions list there are
a slew of wizards that lets you
1. Create a vanilla script without any launch point.
2. Create Scripts with Object launch point.
3. Create Scripts with Attribute launch point.
4. Create Scripts with Action launch point.
5. Create scripts with custom condition launch point.

These wizards will drive you through the process of creating a script and
associating launch points with it. We will discuss launch points in details in a later
section.

Script/Launch point maintenance

After the script and launch point have been created – users can come to the

autoscript application for maintenance. This can be done using the
main/variables/launch point tabs in that application. One can modify the script,
add or update the variables and their bindings as well as the bindings in the
launch point level [if they are overridable]. Deletion of variables are not allowed
unless none of the launch points refer to that variable.

Variables and Bindings

Next in line are the variables and their bindings. Variables are what the scripts
use to interact with Maximo. Variables can be IN, INOUT or OUT. These follow
the classical defintion of IN- pass by value, INOUT/OUT – passed by reference.
The script can modify only the INOUT and OUT type of variables. Modification of
IN variables in the script has no impact outside the script. Variables can be
bound to a Maximo artifact like a mbo attribute, a maxvar, a maximo system
property or can be bound to a literal value which does not tie back to any
Maximo artifact. Note variables bound to a maxvar or a system property are of
type IN only as they cannot be modified by the script. Variables can be scalar or
array type. Array type variables are only supported for mbo attribute bindings
and are always of IN type. More on array type variables later as this would need
a dedicated section to discuss. Variable data type for mbo attributes is driven by
the mbo attribute datatype. So for example a variable bound to Purchase Order
mbos totalcost attribute will inherit its type ie a double. Variables bound to
maxvar and system properties are always of type String. Variables bound to
literal values can define their datatype explicitly by setting “literaldatatype”
attribute in the autoscriptvars table. The supported literal data types are – ALN,
INTEGER, SMALLINT, DECIMAL, YORN, DATETIME and FLOAT. Variable
bindings can be defined both at the script level and the launchpoint level -
provided the definition at the script level allows override of that value. More about
this on the Launchpoints section.

One other important aspect of the OUT and INOUT variables is how their values
can be set back to the Mbos. Mbo attributes can be set with the NOACTION flag
which determines if modifying the value of the mbo attribute will cause the field
validations action routine to be called or not. Mbo attributes can be set with the
NOVALIDATION flag which determines if modifying the value of the mbo
attribute will cause the field validations validate routine to be called or not. Mbo
atributes can be set using NOACCESSCHECK flags which determine if the
Action/Validation routine of the mbo attributes will get called or not. A mbo
attribute can be set with any combination of these flags. All these can be done
from the script/launch point creation wizards and maintenance application by
selecting those [checkbox] options.

Implicit and Explicit Variables

Another important feature is the concept of Implicit and Explicit variables.

Explicit variables are what we just read about – the ones that you define and
bind in the variables page explicitly. Implicit variables are the ones that you do
not define in that page and are provided to you behind the scenes by the
framework. Implicits follow the convention over configuration pattern where the
framework will intelligently inject variables at run-time which might otherwise
would have needed JAVA coding to fetch/set. Some of the implicits are injected
based on the explicit variables defined and some are injected irrespective of
them. Lets cover the ones that are injected irrespective of the explicit variables
first. The list of them is as below with a little blurb describing what they are for.

Name Type Description Applicability
app String Name of the Maximo

application which initiated
the script execution.

All launch points

user String Name of the user whose
action initiated the script
execution.

All launch points

mbo psdi.mbo.Mbo The current mbo in the
context of the script
execution. For example in
case of the Object Launch
Point this will be the Mbo
which is generating the
events on which the script
framework is listening on.
For attribute launch point
this is the attributes owner
mbo. For Action launch point
this is say the Escalation or
workflows mbo.

All launch points

mboname String The name of the current
mbo in the context of the
script exection.

All launch points

errorkey String This one is for throwing
MXExceptions from the
script without having to
explicitly import or refer to
that API. This refers to the
error key in the
MXException. This works
together with the errorgroup
and the params implicit
variables. For those not
familiar with the

All launch points

Name Type Description Applicability
MXException api – its the
standard way to throw
Exceptions from Maximo
based components. The
exception message is
translated which is the main
advantage of using this api
as opposed to just raising a
standard Java Exception
which is not going to be
translated.

errorgroup String Its usage is the same as the
previous one ie the errorkey.
This one points to the error
group of the MXException.
Together with the errorkey it
helps uniquely point to a
error message in Maximo
message repository.

All launch points

params String[] This is the params for the
MXException error
message. So if the
MXException being thrown
using this mechanism is
parameterized then this
params implicit variable
should be used to set the
parameters.

All launch points

interactive boolean Its a boolean variable
indicating whether the script
is executed in an
interactive/UI session [value
true] or a background
session [like say Integration].

All launch points

evalresult boolean This is a boolean variable of
type OUT to indicate the
result of the condition
evaluation.

Only Condition
Launch point

onadd boolean This boolean variable
indicates where the Mbo in
the script is being added [ie
new Mbo – value true] or
not. The script developer
can use this to do

All Launch
points. Ideally
would be
valuable for
Object Launch
Points where the

Name Type Description Applicability
conditional actions or
validations based on the
state of the Mbo.

script is
applicable for
multiple event
types [Add,
Update, Delete
etc]

onupdate boolean This boolean variable
indicates where the Mbo in
the script is being updated
[ie exiting Mbo – value true]
or not. The script developer
can use this to do
conditional actions or
validations based on the
state of the Mbo.

Same as onadd
– All Launch
points.

ondelete boolean Boolean variable indicating
whether the mbo in the
script context is getting
deleted [value true] or not.

Same as onadd
– All Launch
points.

action String The name of the Action that
was generated from the
Action Launch Point wizard.

Action Launch
Point

scriptName String The name of the Script thats
getting executed.

All Launch points

launchPoint String The name of the launch
point for which the script is
getting executed.

All Launch points

scriptHome psdi.mbo.Mbo This is the same as the
implict variable “mbo”
described earlier. This
duplication is for backward
compatibility.

Action Launch
Point

wfinstance psdi.workflow.
WFInstance

The workflow instance mbo. Action Launch
Point – only
when the Action
is launched from
a workflow.

Now lets talk about those implicit variables that are injected into the script based
on the explicitly defined variables.

One thing to keep in mind – all these implicit variables that we describe below

are based on the explicitly defined variables whose binding type is a Mbo
attribute. There are no implicit variables for explicitly defined variables of other
binding types like – Literals, Maxvars and System properties. Below is the list of
the implicit variables. Assume “var” is the explicitly defined variable that binds to
a mbo attribute.

Name Type Description Applicability
var_required Boolean Required flag of

the mbo attribute
that var binds to.

All launch points.
The script can
modify it provided
that var is of type
OUT or INOUT.

var_readonly Boolean Readonly flag of
the mbo attribute
that var binds to.

All launch points.
The script can
modify it provided
that var is of type
OUT or INOUT.

var_hidden Boolean Hidden flag of the
mbo attribute that
var binds to.

All launch points.
The script can
modify it provided
that var is of type
OUT or INOUT.

var_internal Same type as the
mbo attribute to
which var binds to.

For synonym
domain kind of
mbo attributes [like
status] this
represents the
internal [maxvalue]
value for the mbo
attribute.

All launch points.
Applicable only if
var is bound to a
mbo attribute that
binds to a
synonym domain.
The script cannot
modify it.

var_previous Same type as the
mbo attribute to
which var binds to.

The previous value
of the mbo
attribute ie the
value just before
the attribute value
got changed.

Attribute launch
points – applicable
only for the
attribute that
generated the
event. The script
cannot modify it.

var_initial Same type as the
mbo attribute to
which var binds to.

The initial value of
the mbo attribute
ie the value
assigned to that
attribute when the
mbo was
initialized.

All launch points.
The script cannot
modify it.

Name Type Description Applicability
var_modified Boolean Indicates whether

the mbo attribute
to which the
variable var binds
to has been
modified or not.

All launch points.
The script cannot
modify it.

We will cover more about them using examples as part of launch points section.

Array Variables

Lets talk a little bit about the array variables as that would introduce you to the
concept of Mbo Relationship Path [MRP].

The MRP format is an extension of the current attribute path notation. The
current mbo attribute path notation supports the dot “.” to allow traversing related
Mbos and fetching attribute value from them. An example of the current format is
shown below [the examples are based of the PO mbo]:

poline.pocost.costlinenum – which gives us the first POLINE’s [the relation name
is POLINE] 1st POCOST’s [the relation name is POCOST] colstlinenum attribute.

OR

poline[i].pocost[j].costlinenum - which gives us the i th POLINE’s [the relation
name is POLINE] j th POCOST’s [the relation name is POCOST] colstlinenum
attribute.

The MRP notation builds up on this attribute path notation. The one fundamental
difference being that MRP leads to a List/Array of Mbo attributes. For example if
we take the examples above an MRP may look like:

poline.pocost.costlinenum* – which give us a combined list or array of POCOST
mbos for all POLINEs.

poline[linecost>100].pocost[percentage<100].costlinenum* – which gives us all
costlinenum's where the POCOST mbos has percentage < 100 for all POLINEs
with linecost>100. This is effectively filtering the relation clause [poline and
pocost] to sift only those mbos that satisfy the specific condition. This can
generically be represented by :

poline[condition1].pocost[condition2].costlinenum*

where condition1 and condirion2 can be a Maximo condition or a raw SQL
where. As you must have already noticed – the * at the end of this notation
indicates arrays as opposed to just a scalar value.

Consider another variation of this as shown below:

poline[condition1].pocost[i].costlinenum

which implies costlinenum from all i th POCOST of every POLINE that satisfies
condtion1.

We see that the content with the brace ‘[‘ and ‘]’ can be overloaded in 3 different
ways.

1. It can be a number signifying an array index.
2. It can be a Maximo condition which can be prefixed with the cond:
3. Can be a raw SQL where

Now let’s take into consideration the different scenarios/context of this MRP
evaluation. Note these cases described below can be mixed in a MRP as part of
the different relation tokens.

MRP with no filter
This is a MRP where none of the relation tokens has any associated filter. This is
the simplest case where the MRP looks like R1.R2… where R1 and R2 are
relation names and there is no associated filter clause with these relations. In
this case the evaluation would involve just iterating over the content of R1 and
R2 MboSets and preparing a list of R2 mbos.

MRP with index filter:
This is a MRP where one or more of the relation tokens has an associated index
filter. This is the case where the MRP looks like R1[index1].R[…]…. where a
relation token [one or more] has index filter => for that Mboset identified by the
relation R1 use the Mbo at index “index1” for the MRP evaluation. This is an in-
memory filtering and does not impact the state of the MboSet on which the index
filter is getting applied.

MRP with condition filter:
This is a MRP where one or more of the relation tokens has an associated filter
with a Maximo condition. This is another example of in-memory filtering where
the MRP looks like R1[cond:c1].R2[…] where c1 is a name of a Maximo
condition and cond is the prefix indicating it’s a Maximo condition. The
evaluation is based on in memory filtering of the Mbos in MboSet R1 based on
the condition c1 and does not impact the state of the MboSet on which the filter
is getting applied.

MRP with a where filter:
This is a MRP where one or more of the relation tokens has an associated filter

with a where clause. This amounts to appending an additional where clause to
the existing relation clause. This definitely would cause the related MboSet reset
to be called and while it might work for certain cases it definitely would result is
unpredictable output for interactive user sessions [user browsing an app]. The
implementation should use temporary relations created dynamically to replace
each of the relations associated with such a filter to evaluate this MRP. So for
example if the MRP was R1[where].R2.R3[where] the implementation should
replace [transparently] R1 and R3 with temporary relation names with the same
relation clause as their original counterparts. This will work only if all the Mbos
referred by the MRP relation tokens were not toBeSaved() => their in memory
state represents their state at the persistent store.

One thing to note here is – its always recommended to just use the predefined
relationships as opposed to dynamically adding filters to the relationship just
keeping performance in mind. The reason is – in case we need to access this
variable more than one times – the evaluator will always create a temporary
relationship between the src and the target objects. This however will prevent the
usage of a cached relationship set from the origin mbos.

The where clause approach will append the where clause condition. The the
condition approach will filter the MboSet in memory without firing a sql where
clause for the added filter. This however will take more time to sift than using the
SQL clause. The conditions application can be used to define the filter confitions.

Launchpoint

Launchpoints are what we call the application customization points.
Launchpoints define which application artifact the user wants to customize by
attaching the script to that point. In effect the script is executed [launched] in the
context of a launchpoint. For example if the user wants to customize the Asset
mbos initialization routine the key words Asset mbo & initialization routine
defines that launchpoint. Another example might be that the user wants to
customize the Asset mbo's purchaseprice attribute's field validation routine. Here
the key words that define the launchpoint are - Asset mbo, purchaseprice
attribute and field validation routine. So in effect a launchpoint is a
configuration to identify what application point we are trying to customize. A
script can be associated with 1 or more launchpoint at the same time. For
example a generic site level validation script can be associated with all site level
objects in Maximo – where each association is defined as an individual
launchpoint. A script can be associated with launchpoints of the one and only
one type. For example a script associated with the Object launch point cannot be
associated again with another attribute launch point. Once the first association is
done between a script and a launch point – all subsequent launch points have to
be of the same type as the first one.

Now lets take a look at the launchpoints [aka customization points] touched up

by the scripting framework. Below is the list of the points supported currently.
1. Mbo initialization and save point logic [aka Object launchpoint].
2. Mbo attribute value modification – validation and action logic [aka Object

attribute launchpoint].
3. Actions – which are used by a multitude of other components like

Workflow, Escalation, UI Menu, UI Buttons [aka Action launchpoint].
4. Custom conditions – used by Workflow conditions, Conditional UI etc

[aka custom condition launchpoint].

Launchpoints are what you think of first when you want to customize an
application. No wonder all the wizards in the Script app starts with defining the
launchpoint. Next lets explore the individual point types to understand what they
bring into the table for customizers and deployers.

Object Launch Point

First in our list is the object launch point. This launchpoint lets you invoke
scripts for the Mbo events – init and save point ones [add, update and delete]. A
launch point can be configured to listen to one or more of these events at the
same time. The script will have access to the event Mbo [via implicit variable
“mbo”]as well as all the related Mbos. The initialization event based scripts can
be used to set calculated fields, set fields as readonly/required/hidden or set
conditional defaults to mbo attributes. The save point event based scripts can be
used to implement save point object validations as well as save point actions.

Below is an example that will demonstrate a initialization point script and the next
one would demonstrate a save point script.

So lets take the use case in mind before we jump into the code and
configuration. Suppose we want to customize the Asset application to display the
total spare part quantity in a new non-persistent Asset object attribute called
sparepartqty. This boils down to the requirement - whenever an Asset mbo gets
initialized the sparepartqty will display the sum of all the spare part quantities
associated with that asset. So based on our knowledge of launch points we get
that it will be a Object Launch Point for the object Asset and we need to attach
the script to the initialization event of the Asset object. To do this we need to
launch the “Create Scripts with Object Launch Point” wizard as shown below.

Once the wizard is launched the first thing we do is to create a launch point as
shown below. Note that the “initialize” event is what we want to use for launching
this script.

So now lets look at the variables we might need to do this customization. First of
course is a variable called sptqt which binds to the new Asset mbo attribute
sparepartqty. Now we only intend to set the value of this attribute and hence this
variable would be of type OUT. Next we need to get all the quantities from the
related Sparepart Mbos of the Asset. To do that we use the array variable
notation * to get an array of quantity values from the related sparepart MboSet.
Lets say the array variable is qtys and its bind value would be <asset to
sparepart relation name>.<attribute name>* which is sparepart.quantity*. The *
at the end of-course indicates the array nature of this variable and also instructs
the framework to form the array using the specified relationship.

And as mentioned earlier array variables are always of type IN and that is perfect
for this as we are not modifying the quantities – we are merely summing that up.
So with these basic variables defined we next would attempt to write the script as
below

if qtys is not None:
 sptqt = sum(qtys)

Basically a 2 liner which validates if there are infact sparepart Mbo's and if there
is then sum them up and set it to the sptqt variable. The scripting framework
picks that up and sets the value back to the binding of the sptqt ie sparepartqty.
So the amount of Java coding done here is a BIG ZERO – its a pure jyhton
script. Now going by the nature of the calculated fields – the sparepartqty should
be always read only. And what best place to set that to read only other than this
script – which embodies the Asset initialization event. Below is the final script
which adds the code to set the sparepartqty attribute to read only.

sptqt_readonly=True
if qtys is not None:
 sptqt = sum(qtys)

Once you press the create button in the last wizard step to create the script – a
successful creation of the script and the launch point will generate this response
as shown below.

In case of a compilation error you would be forced to stay back on the last page
till you cancell or fix this script.

Here you see the magic of this implicit variable concept. When you bound sptqt
to sparepartqty attribute the scripting framework injected at runtime not only the
variable sptqt but also some implicit variables like sptqt_readonly, sptqt_required
and sptqt_hidden each of which are of type boolean and caters to the read only,
required and hidden flags of the Mbo attribute. Setting a mbo field to readonly
otherwise would have required java coding. A java code to do this same
functionality would look like below

mbo.setFieldFlag(“sparepartqty”, MboConstants.READONLY, true);
MboSetRemote sparepartSet = mbo.getMboSet(“sparepart”);
int i = 0;
MboRemote sparepartMbo = sparepartSet.getMbo(i);
double totalQty = 0;
while(sparepartMbo != null)
{

 totalQty += sparepartMbo.getDouble(“quantity”);
 sparepartMbo = sparepartSet.getMbo(++i);

}
mbo.setValue(“sparepartqty”, totalQty, MboConstants.NOACCESSCHECK);

So by this time you must have figured out what amount of pain the scripting
framework has saved you!. Dont just think in terms of the lines of code [which is
almost a 1:2] think also about the api knowledge that you would need for this
simple task. And this code does not even address the pain that you will go
through to attach this code to the Asset Mbo's initialization routine. There your
choices are even more hairy – either you would have to extend the Asset mbo
and override the init() method of that mbo to put your code [in which case in the
the above code just replace the mbo variable with “this” pointer] or you would
end up attaching your code as a listener to the Mbo's event – which is a separate
api stack on its own!. In the scripting framwork all these are taken care for you
the moment you have pressed the “Create” button to end your wizard [thus
submitting your script]. As a script developer you just code the logic – the
framework takes care of the behind the scenes plumbing work to manage and

execute your script. So yes you will save time and money with this for sure.

By the way the above java code would work [provided you do the jython syntax
styling on it – like removing the ; and the curly braces and ..] even inside the
Jython script – that is just in case you are an avid java programmer!. Just don't
forget to import the following before you submit the script -
from psdi.mbo import MboRemote
from psdi.mbo import MboConstants
from psdi.mbo import MboSetRemote
 which is jython way of importing external java libraries. This shows that while
scripting framework gives tremendous power to script developers to get their
Maximo customization done without knowing Maximo apis – it does not take
away the Java coding power from the developers who are used to that. So
effectively you can invoke all the Maximo apis [for example make a Web service
call to fetch some external data using the Integration framework] from inside a
script as long as you have imported them properly.

Next lets move onto some save point validations which hopefully will help
demonstrate more features of this framework. As before lets deal with the use
case first. The use case here is a need to customize the Asset mbo to enforce a
naming convention for assets [assetnum] based on their types [assettype]. This
effectively boils down to the requirement that whenever we are creating Assets
we have to follow a naming convention for the assetnum. The key words here
are in blocks which help us identify the launchpoint type and the event point in
that type. Its an object launchpoint for the Asset mbos add event. So we use the
Object Launch point wizard to create and deploy this custom logic. To start with
we need to figure out the variables and their bindings. From the requirement its
clear we need the 2 input values from the assetnum and assettype. So there are
2 IN variables called anum and atype which are bound to those attributes
respectively. Those are the only 2 variables that we need to do this task. Below
is the script code [in Jython]

def setError(prefix):
global errorkey,errorgroup,params
errorkey='invalidassetprefix'
errorgroup='asset'
params=[prefix,assettype]

if atype_internal=='FACILITIES' and not anum.startswith('FT'):
setError('FT')

elif atype_internal=='FLEET' and not anum.startswith('FL'):
setError('FL')

elif atype_internal=='IT' and not anum.startswith('IT'):
setError('IT')

elif atype_internal=='PRODUCTION' and not anum.startswith('PR'):

setError('PR')

Here we define a jython function called setError which is responsible for setting
the error flags. We see the use of the <variable name>_internal implicit variable
which is applicable only for attributes which uses a synonymdomain. The
<variable name>_internal provides the internal value for that attribute based on
its current external value. So this script uses the internal value of the assettype
attribute to establish the naming convention. For example Assets with assettype
[internal] value FACILITIES should have assetnum starting with “FT” etc.

This same code in java would have required to know the Maximo api to find the
internal value of the assettype using the Translator api as below.

String domainId =
MXServer.getMXServer().getMaximoDD().getMboSetInfo("asset").getMboValue
Info(“assettype”).getDomainId();
String atypeInternal=
MXServer.getMXServer().getMaximoDD().getTranslator().
toInternalString(domainId,mbo.getString(“assettype”), mbo);

This is something even an avid Maximo developer would find difficult to
remember and use and we dont even want to go into the plumbing work thats
needed to execute this code.

We also see how errors can be thrown in this framework without using Maximo
apis. Just set the errorgroup, errorkey and params [optional] to the configured
error message group, key and the params array can be derived from the script
variables. In this case we have predefined the error group asset and the error
key “invalidassetprefix” using the Maximo database configuration application.
The params as you can make out are derived at run-time from the script.

One thing to note here is that this way of setting error flag to throw error is not
real-time ie when the script code is executing the exception would be thrown only
after the script code has completed execution. At the end of the script execution
the framework would detect that an error flag is set and it will throw the
corresponding Maximo excpetion for that error group/key combination. So you
should consider the fact that even after setting the error flags in the script – the
script execution will continue and you should have adequate checks in your
script code to bypass that code if the error flag is set. Hopefully this does not
give you the wrong impression that you cannot throw the raw MXException from
the script code – shown below is how you do it.

from psdi.util import MXApplicationException
....
....
if <some condition>:

params = [prefix,assettype]
raise MXApplicationException('asset','invalidassetprefix', params)

As before the scripting framework takes care of all the plumbing behind the
scenes. Once you are done submitting your script using the wizard you can
come to the Asset app and try to save a test asset. You should see your
validation routine gets executed immediately. No restart, No rebuilding ear and
No redeployment.

Attribute Launch Point

Next we cover the Attribute Launch Point where one can customize the field
validation and actions using the scripting framework. As before the script will
have access to the event Mbo [via implicit variable “mbo”] as well as all the
related Mbos. In addition the modified attribute would also be available implicitly
as a variable inside the script. The variable name would be the lower case value
of the modified attribute name. A couple of examples below would help explain
this better.

As before we continue customizing the Asset Mbo. The use case this time is to
add custom business logic based on the Asset purchase price [attribute
purchaseprice in Asset] value. For example we want to set the vendor field
required or not required based on the purchaseprice attribute value and also to
calculate the replacement cost based on the purchase price. We also want to
make sure the purchase price does not exceed a maximum allowed value.

Based on the use case we know that the logic has to injected at the modification
of the purchasprice attribute value – which implies it should be modeled as an
Attribute Launch Point. Below is a way to get to the wizard.

Once we launch the wizard our step 1 is to create the launch point as shown be

Now lets look at the variables that we would need for this task. We definitely
need the purchaseprice variable. But we don't need to define that explicitly as
that's already available implicitly inside the script as its the attribute on which the
script is listening on. Next we need the vendor attribute to set it required or not
based on the purchaseprice value. Say the variable for that is vend and its type
is OUT. The only remaining one is the replacementcost and say we bind that to
the variable named rc with type as OUT.

Variable name Variable type Binding
vend OUT vendor
rs OUT replacementcost

So now lets look at the script below which we enter in the next step of the wizard.

if purchaseprice > 200:
errorgroup = "something"
errorkey="else"

else:
if purchaseprice >= 100:

vend_required=True
else:

vend_required=False
rc = purchaseprice/2

As we see the 3 variables purchaseprice, errorgroup and errorkey are implicit
variables which you did not have to define. The only ones that you had to define
for this script explicitly are vend and rc. And if purchaseprice is > 100 we set the
vendor as required by setting implicit boolean variable vend_required to true and
false otherwise. As we discussed earlier – when a variable is bound to a Mbo
attribute the framework always injects implict variables that represent the meta
data state of the attribute – like [vend_]readonly, [vend_]required and
[vend_]hidden. Finally we calculate the replace cost by setting the variable rc to
purchaseprice/2 [basically rc is a function of purchase price]. Note carefully that

the whole logic is done inside the “else:” block. A faulty way to write the script
would have been as below.

if purchaseprice > 200:
errorgroup = "something"
errorkey="else"

if purchaseprice >= 100:
mbo.setFieldFlag(“vendor”,MboConstants.REQUIRED, true)

else:
mbo.setFieldFlag(“vendor”,MboConstants.REQUIRED, false)
mbo.setValue(“replacementcost”,purchaseprice/2)

This is using the faulty assumption that setting the errorgroup and errorflag will
cause the script to stop execution and throw the error [like a real time throw
exception which returns the control back to the caller]. As mentioned earlier this
is not how the error flags work. Unlike throwing an exception its not real time. It
will throw the exception only after the script execution completes. So in this faulty
code case the vendor's required flag will be affected and the replace cost value
will be modified and then the script will throw an exception which will not rollback
those changes. This is because we used explicit mbo calls to set the value and
the flag. Had we used the variables this would have still worked as the
framework checks for the error flag right after the script execution end and
before setting an OUT and INOUT variable values back to the Mbo's. So the
code below would have still worked though it would not be as readable as the
original.

if purchaseprice > 200:
errorgroup = "something"
errorkey="else"

if purchaseprice >= 100:
vend_required=True

else:
vend_required=Flase
rc = purchaseprice/2

Now lets look at another example before we move on to the next launch point
type. The next use case would be to make the calculated field that we created
for the Asset sparepart total quantity calculation more real-time. For example if
we change the quantities of the related spareparts we should see the calculated
field [sparepartqty] value change real-time. For that we would need to create an
script which will be associated with the sparepart quantity attribute. The explicit
variable bindings are shown below.

Variable name Variable type Binding
sptqt INOUT &owner&.sparepartqty

As apparent from the binding the variable sptqt is bound to the owner's [Asset
mbo] sparepartqty attribute. We do have to set the sptqt variable with the No
Access Check as its marked as readonly by our original [Object launch point]
script at the initialization of the Asset mbo. As explained before the variable
quantity [the attribute on which the script is listening to] would be implicitly
injected in the script as that's the attribute on which the script is listening. The
script will look as below.

sptqt=sptqt+quantity-quantity_previous

Here we see the use of the implicit variable quantity_previous. This represents
the value of the quantity attribute prior to the modification ie the value at the
initialization of the sparepart Mbo. And the variable quantity of course holds the
current modified value of the quantity attribute.

So combination of this script along with the Object Launch point script can give
you a complete calculated field logic implemented using the scripting framework
with 3 lines of script and a few clicks in the Script Wizard!.

Action Launch point

We all know about the Maximo Actions framework. In case you didn't know -
Maximo has a built in library of Actions which can be invoked from Workflows,
Escalations and UI Menu's and UI Buttons and a slew of other components.
More often than less those built in library of Actions are not enough and
implementers go out and develop their own custom Actions and of course the
language you are forced to use is JAVA. Scripting addresses this concern where
an Action can be scripted with a scripting language of your choice [OOTB –
Jython and JavaScript]. Lets see how we can use a scripted Action to do some
calculated meters for Assets.

As in before lets first study the requirement which is to be able to calculate an
Asset meter value based on some other meters associated with that Asset. For
example lets say we want to calculate the value of the PRESSURE meter based
on the IN-PRESSUR and O-PRESSUR meter such that the last reading of the
PRESSURE meter is the summation of the IN and O-PRESSUR meters
readings. And lets say we choose to do it in an offline fashion where as opposed
to a real time fashion [for which we would have needed to use Object Launch
points to trap meter modification events]. The simplest way to do offline actions
in a repeated fashion in Maximo is to use Escalations which are nothing but cron
jobs which execute a predefined Action in the context of a Mbo. Now instead of
writing the Action java code we will script it up. Shown below are the steps to do
this.

First we define a relationship called assetmeterip [asset meter input pressure]
using the DB-Config application which relates an Asset to the Asset meter
named IN-PRESSUR. The where clause is as below.

assetnum=:assetnum and siteid=:siteid and metername='IN-PRESSUR'

Similarly we define the other 2 relationships namely assetmeterop and
assetmeterp as below

assetnum=:assetnum and siteid=:siteid and metername='O-PRESSUR'

assetnum=:assetnum and siteid=:siteid and metername='PRESSURE'

Next we use the Action Launch Point wizard to define the Action Launch Point.

Though this wizard would create the Action behind the scene – its the
responsibility of the implementer to attach that Action to the escalation, workflow
or the UI button/menu. By default the launch point name is used as the name of
the Action, but you can modify the value to suit your naming convention. The
launch point name need not be the same as the Action name. In the first step of
the wizard you would see that the object name is optional, which is in-line with
the Maximo Action framework where an Action may or maynot be associated
with a Maximo object. In this case however we do want to specify the object as
Asset as the Action is specific to the Asset Mbo. Since we are defining a new
script we will choose the “New Script” option.

The next page is the bindings page where we are going to define the variables
that we intend to use for the script and their bindings. To do this job all we need
is the last reading value of the IN-PRESSUR and O-PRESSUR meters and set
the calculated value to the new reading attribute of the PRESSURE meter. We
however do not want to set the value if the calculated value is the same as the
last reading value of the PRESSURE meter as that would generate meter
reading history even though the reading never got modified. To check this we
would need the last reading value of the PRESSURE meter. So our variable
bindings will look like below

Variable name Variable type Binding
iplr IN assetmeterip.lastreading
olr IN assetmeterop.lastreading
plr IN assetmeterp.lastreading
pnr OUT assetmeterp.newreading

The iplr [IN-PRESSUR meters last reading], olr [O-PRESSUR meters last
reading] and plr [PRESSURE meters last reading] are all of type IN as we just
need those values to calculate the pnr [PRESSURE meters last reading]. Note
the pnr is of type OUT as we are going to set it back to the PRESSURE meter
mbo.

Next page is the script code and it will look as below.

y=float(iplr)+float(olr)
if y!=float(plr):
 pnr=str(y)

As you notice here y is a local variable to the script.

As you must have figured out – the if check in the 2nd line takes care of not
updating the pnr value if the calculated value is the same as the plr [PRESSURE
meters last reading]. Note this calculation was implemented as a mere addition
just as an example. In real implementations it can be any complicated
mathematical calculation as needed for your business case and only limited by
the mathematical support provided by the scripting language of your choice.

Now we are not done yet as we need to associate this Action to an Escalation.
Our next step is to create an escalation which will only apply to those Assets
which have all those 3 meters. We use the escalation condition to implement
that sifting functionality. The SQL condition for the above case will look like
below.

exists (select assetnum from assetmeter where metername='IN-PRESSUR' and
assetnum=asset.assetnum and siteid=asset.siteid) and exists (select assetnum from assetmeter
where metername='O-PRESSUR' and assetnum=asset.assetnum and siteid=asset.siteid) and
exists (select assetnum from assetmeter where metername='PRESSURE' and
assetnum=asset.assetnum and siteid=asset.siteid)

Next we select the Action for this escalation – the name of the Action is the same
as the launch point name [unless you had modified it in the step 1 of the wizard].
After we activate the escalation our job is done – the escalation executes the
scripted Action for all those Assets with the 3 meters and the modified Asset
meter readings are saved and committed by the escalation framework.

An important thing to note here is if you had chosen to not attach the Action to a
Maximo object – the step 2 of the wizard [variables and bindings] will not let you
bind a variable to a Mbo attribute. You can however use the literal, system
property and maxvar variable binding types. A use case for that might arise when
you write a generic Action that say invokes a service [like a Web service] which

is not specific to a Mbo or you intend to do the script code based on direct usage
of the Mbo apis and hence will not need the mbo attribute bindings.

Condition Launch Points

We all know about Maximo conditions which are [based on the javacc parser]
used in Workflows, Conditional Uis etc. One aspect of custom conditions lets you
write up a condition using Java code in case the condition is complicated enough
to be encoded using the javacc based condition grammar. This launch point lets
you avoid that Java coding and enables you to attach a scripted condition to
these Maximo components [Workflows/Conditional UIs].

Lets take an example to understand it better. The use case is to add a condition
to the workflow that would change the status of Asset from not ready to
operating if the Asset has spareparts quantity total as greater than 10 and the
asset vendor is not null.

As before we would launch the wizard for the condition launch point from the
Autoscript application [List Tab → drop down actions → Create → Create Script
with Custom Condition Launch Point] and like other's this is also a 3 step
process.

Step 1 is ofcourse defining the launch point. As we can see this is an entirely
new script.

Step 2 will be to define and bind the variables. This script will involve 2 variables
as listed below
Variable name Variable type Binding
vend IN vendor
qtys IN sparepart.quantity*

Step 3 would be to define the script. The script would look like as below

if vend is not None and qtys is not None and sum(qtys)>10:
 evalresult=true

This evalresult as explained earlier is an implicit variable which carries the
boolean result of the condition evaluation. Its predefined and is always there for
condition launch points.

At the end of the wizard process when we submit the design – it would create a
script with the logic as above. But the work is not done yet as we now have to
attach the script to the actual condition which unfortunately is still a manual
process. The steps are listed below:

1. create a condition node in the workflow designer.
2. Set the title of the condition node to <scriptname>:<launchpointname>

where script name and the launch point name would point to the
script+launch point pair just created.

3. Bring up the the condition node properties dialog [as shown below in the
screen shot] to set the condition type as custom and set the custom Java class
to com.ibm.tivoli.maximo.script.ScriptCustomCondition which is the predefined

proxy for the scripted conditions.
4. Save and activate the workflow.

One thing to note here is the title field value. This value is mapped to the
WFNODE Mbo's title attribute which has a limit of 10 characters. And as you can
see that the title is holding a pointer to the script launch point pair by appending
the script name and the launch point name with the “:” as separator. Each of
script name and launch point name can be 20 characters [out of the box setting].
So we do have a length issue here and at this point there is not much we can do
but to keep the names of the script and launch point limited to 4 characters at
maximum. Also if the script has one and only launch point we can just omit the
launch point name from the title and just do with the script name. If all these
have made you wonder why it was done this way as opposed to keeping an entry
in the WFNODE table for the script name and the launch point name the answer
is pretty simple – we just did not want to modify any existing Maximo artifacts.

The condition in the example was trivial and is meant to demonstrate the “how to
do custom conditions using scripting” aspect. As you must have figured out – we
can harness all the powers of scripting in this launch point and do all complicated
evaluations needed to come out with the boolean result [evalresult] for the
evaluation.

Activating and Deactivating scripts

Scripts can be activated or deactivated from the launchpoint tab of the scripting
application. A script that is deactivated will not be invoked by Maximo. For
example if a Attribute Launch point is deactivated – the script for that launchpoint
will not be invoked when say the value of that mbo attribute changes. This is a
very useful tool for debugging when you run into some trouble with the
application behaviour and want to take the script out of the equation temporarily
just to test the vanilla application devoid of all the customization. One thing to
note here is the autoscript status attribute value has no significance as to how
the scripting framework will [or will not] invoke the script. So a script in the draft

state is treated the same as a script in “Active” state.

Debugging Scripts

By default all script related logging is done via the autoscript logger. Every script
can be configured at different log levels – DEBUG,INFO,ERROR etc. The default
setup for any script is at ERROR which can be changed from management
application or at the time of creation [in the 2nd step of the wizard].

If we were to just debug the script below

y=float(iplr)+float(olr)
if y!=float(plr):
 pnr=str(y)

We can put some debug statements like

print “iplr=”+iplr
print “olr=”+olr
y=float(iplr)+float(olr)
print “y=”+y
if y!=float(plr):
 pnr=str(y)
 print “pnr=”+pnr

Next we need to make sure that the log level for the autoscript logger is set to
the log level of the script. For example set both of them to INFO.

This will result in the print statements to show up in your systemout log. If
required, the log statements produced by this logger can be re-directed to a
dedicated log file holding only script-related log statements. Note that the syntax
of the print statement depends upon which language the script is being written
with. Also if the 'autoscript' logger is set to ERROR level logs only, then the print
statements inside the automation script will not be written out to log file.

The scripting framework logs cover script loading, initialization, execution time
and so forth. To see the values being passed received by script variables, set the
autoscript logger to 'DEBUG', apply the logging settings and run the script
configuration. Variable values should be output to the log file or system console.
As a general rule of thumb we can set the autoscript logger to INFO during script
development/debugging time and set inidvidual scripts log level to INFO too
which will push the script specific print statements to the log file.

Below is the list of log information automatically generated at the DEBUG level
from the scripting framework.

1. Launch point name and script name that are about to be executed
2. Script execution time (as time elapsed between start and end of script

execution)
3. Application name, logged in use name, MBO name, MBO unique ID

values always injected as implicit data to the script - script author may or may not
use these

4. Variable values passed into the script based on variable bindings
(variables that are sourced from MBO attribute, MAXVAR, system property or
literal)

To redirect your scripting logs to a separate log file follow the steps below.

1. Go to Logging app.
2. Click Manage Appenders from the Select Action menu.
3. Click New Row in the Manage Appenders popup dialog.
4. Fill in Details as:
• Appender = ScriptingOnly [or any appropriate name you choose]
• Appender Implementation Class = psdi.util.logging.MXFileAppender [you

can select this from the value list]
• File Name = autoscript.log [or any appropriate file name you choose]
• Accept all other defaults.

5. Save the new appender by clicking OK.
6. Locate 'autoscript' logger in the Root Loggers section of the application.
7. Click the Manage Appenders icon to the right of Appenders field in the

Details section for 'autoscript' logger.
8. Select only the appender you created earlier (ScriptingOnly), and de-select

any other appender previously associated with this logger.
9. Click OK to save the new association. From the Select Action menu click

'Apply' for the log settings to take effect.

