
IBM
®

DB2
®

Universal Database

SQL Getting Started
Version 7

SC09-2973-00

���

IBM
®

DB2
®

Universal Database

SQL Getting Started
Version 7

SC09-2973-00

���

Before using this information and the product it supports, be sure to read the general information under
“Appendix C. Notices” on page 111.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Welcome v
Related Documentation for This Book v
Highlighting Conventions. v

Chapter 1. Relational Databases and SQL . 1

Chapter 2. Organizing Data. 3
Tables 3
Views 4
Schemas. 4
Data Types 5

Chapter 3. Creating Tables and Views . . . 9
Creating Tables 9
Inserting Data 10
Changing Data 12
Deleting Data 12
Creating Views 13

Using Views to Manipulate Data 15

Chapter 4. Using SQL Statements to
Access Data 17
Connecting to a Database 18
Investigating Errors 18
Selecting Columns 19
Selecting Rows 20
Sorting Rows. 22
Removing Duplicate Rows 24
Order of Operations 24
Using Expressions to Calculate Values . . . 25
Naming Expressions 25
Selecting Data from More Than One Table . . 26
Using a Subquery 27
Using Functions. 28

Column Functions 28
Scalar Functions. 29
Table Functions 30

Grouping 30
Using a WHERE Clause with a GROUP BY
Clause 31
Using the HAVING Clause After the
GROUP BY Clause 32

Chapter 5. Expressions and Subqueries. . 33

Scalar Fullselects 33
Casting Data Types 33
Case Expressions 34
Table Expressions 35

Nested Table Expressions 36
Common Table Expressions 36

Correlation Names 38
Correlated Subqueries. 39

Implementing a Correlated Subquery . . 41

Chapter 6. Using Operators and Predicates
in Queries 45
Combining Queries by Set Operators. . . . 45

UNION Operator 45
EXCEPT Operator 46
INTERSECT operator 47

Predicates 48
Using the IN Predicate 48
Using the BETWEEN Predicate. 48
Using the LIKE Predicate 49
Using the EXISTS Predicate 49
Quantified Predicates 50

Chapter 7. Advanced SQL 51
Enforcing Business Rules with Constraints
and Triggers 51

Keys 51
Unique Constraints 52
Referential Integrity Constraints 52
Table Check Constraints 53
Triggers 54

Joins 58
Complex Queries 62

ROLLUP and CUBE Queries 62
Recursive Queries 63

OLAP Functions 63

Chapter 8. Customizing and Enhancing
Data Manipulation 65
User-Defined Types 65
User-Defined Functions 66
Large Objects (LOBs) 67

Manipulating Large Objects (LOBs) . . . 67
Special Registers 68
Introduction to Catalog Views 69

© Copyright IBM Corp. 1993, 2000 iii

Selecting Rows from System Catalogs . . 69

Appendix A. Sample Database Tables . . 71
The Sample Database 72

To Create the Sample Database. 72
To Erase the Sample Database 72
CL_SCHED Table 72
DEPARTMENT Table 73
EMPLOYEE Table 73
EMP_ACT Table 76
EMP_PHOTO Table 78
EMP_RESUME Table 78
IN_TRAY Table 79
ORG Table 79
PROJECT Table 80
SALES Table 81
STAFF Table 82
STAFFG Table 83

Sample Files with BLOB and CLOB Data
Type 84

Quintana Photo 84
Quintana Resume 84
Nicholls Photo 85
Nicholls Resume 86
Adamson Photo. 87

Adamson Resume 87
Walker Photo 88
Walker Resume 89

Appendix B. Using the DB2 Library . . . 91
DB2 PDF Files and Printed Books 91

DB2 Information 91
Printing the PDF Books 100
Ordering the Printed Books 101

DB2 Online Documentation 102
Accessing Online Help 102
Viewing Information Online 104
Using DB2 Wizards 107
Setting Up a Document Server 108
Searching Information Online 108

Appendix C. Notices 111
Trademarks 114

Index. 117

Contacting IBM 121
Product Information 121

iv SQL Getting Started

Welcome

This book is intended to introduce users to Structured Query Language (SQL)
and relational databases. It will:
v Discuss basic concepts of SQL used in the DB2 product.
v Explain how to perform database manipulation tasks.
v Demonstrate tasks through simple examples.

If you are the system administrator, before you try out any of the examples in
this book, you should:
v Install and configure the server as outlined in the Quick Beginnings book for

your operating system. Create the SAMPLE database using the ″First Steps″
option. The SAMPLE database can also be created from a command line
prompt. See the SQL Reference for details. Note: Do not put your own data
into the DB2 SAMPLE database.

v Create the DB2 administrator user ID by following the instructions in the
Quick Beginnings book.

If you are not the system administrator, ensure that you have a valid user ID
and the appropriate authority and privileges to access the SAMPLE database.

Related Documentation for This Book

You may find the following publications useful:

Quick Beginnings Contains information required to install and use the database manager.

SQL Reference Contains SQL reference information.

Administration
Guide

Contains information required to design, implement, and maintain a database
to be accessed either locally or in a client/server environment.

Application
Development Guide

Discusses the application development process and how to code, compile,
and execute application programs that use embedded SQL to access the
database, or run as DB2 stored procedures using the SQL Procedure language
(or other supported programming languages).

Highlighting Conventions

The following conventions are used in this book.

Bold In examples, it indicates commands and keywords predefined by the system.

© Copyright IBM Corp. 1993, 2000 v

Italics Indicates one of the following:
v The introduction of a new term
v A reference to another source of information.

UPPERCASE Indicates one of the following:
v Commands and keywords predefined by the system
v Examples of specific data values or column names.

vi SQL Getting Started

Chapter 1. Relational Databases and SQL

In a relational database, data is stored in tables. A table is a collection of rows
and columns. See Figure 1 on page 3 for a graphical example of a table.
Columns (vertical) and rows (horizontal) have been marked on the figure.
Structured Query Language (SQL) is used to retrieve or update data by
specifying columns, tables and the various relationships between them.

SQL is a standardized language for defining and manipulating data in a
relational database. SQL statements are executed by a database manager. A
database manager is a computer program that manages the data.

A partitioned relational database is a relational database where the data is
managed across multiple partitions (also called nodes). A simple way to think
of partitions is to consider each partition as a physical computer. In this book,
we will focus our attention on single partition databases.

You can access the sample database and try out all the examples in this book
through interactive SQL by using an interface such as the Command Line
Processor (CLP) or the Command Center (CC).

© Copyright IBM Corp. 1993, 2000 1

2 SQL Getting Started

Chapter 2. Organizing Data

This chapter presents important conceptual descriptions of tables, views and
schemas. It is a general overview showing the connection between different
building blocks of a relational database. The last section provides a brief
discussion of some of the important and more commonly used data types.

Tables

Tables are logical structures made up of a defined number of columns and a
variable number of rows. A column is a set of values of the same data type. A
row is a sequence of values composing a single record in the table. The rows
are not necessarily ordered within a table. To order the result set, you have to
explicitly specify ordering in the SQL statement which selects data from the
table. At the intersection of every column and row is a specific data item
called a value. In Figure 1, ’Sanders’ is an example of a value in the table.

A base table holds user data and is created with the CREATE TABLE
statement. A result table is a set of rows that the database manager selects or
generates from one or more base tables to satisfy a query.

Figure 1 illustrates a section of a table. Columns and rows have been marked.

Figure 1. Visualization of a Table

© Copyright IBM Corp. 1993, 2000 3

Views

A view provides an alternate way of looking at the data in one or more tables.
It is a dynamic window on tables.

Views allow multiple users to see different presentations of the same data. For
example, several users may be accessing a table of data about employees. A
manager sees data about his or her employees but not employees in another
department. A recruitment officer sees the hiredates of all employees, but not
their salaries, while a financial officer sees the salaries, but not the hiredates.
Each of these users operates with a view derived from the real table. Each
view appears to be a table and has its own name.

An advantage of using views is that you can use them to control access to
sensitive data. So, different people can have access to different columns or
rows of the data.

Schemas

A schema is a collection of named objects (tables and views, for example). A
schema provides a logical classification of objects in the database.

A schema is created implicitly when you create a table, a view or any other
named object. Or, you can create it explicitly using the CREATE SCHEMA
statement.

When you create a named object, you can qualify (associate) its name with the
name of the particular schema. Named objects have two-part names, where
the first part of the name is the schema name to which the object is assigned.
If you do not specify a schema name, the object is assigned to the default
schema. (The name of the default schema is the authorization ID of the user
executing the statement.)

For interactive SQL, the method used to execute the examples in this book,
the authorization ID is the user ID specified with the CONNECT statement.
For example, if the name of a table is STAFF, and the user ID specified is
USERXYZ, then the qualified table name is USERXYZ.STAFF. See “Connecting
to a Database” on page 18 for details on the CONNECT statement.

Some schema names are reserved. For example, built-in functions are in the
SYSIBM schema while the preinstalled user-defined functions belong to the
SYSFUN schema. Refer to the SQL Reference for details on the CREATE
SCHEMA statement.

4 SQL Getting Started

Data Types

Data types define acceptable values for constants, columns, host variables,
functions, expressions and special registers. This section describes the data
types referred to in the examples. For a full list and complete description of
other data types refer to the SQL Reference.

Character String

A character string is a sequence of bytes. The length of the string is the
number of bytes in the sequence. If the length is zero, the value is
called the empty string.

Fixed-Length Character String

CHAR(x) is a fixed length string. The length attribute x must
be between 1 and 254, inclusive.

Varying-Length Character String

Varying-length character strings are of three types:
VARCHAR, LONG VARCHAR, and CLOB.

VARCHAR(x) types are varying-length strings, so a string of
length 9 can be inserted into VARCHAR(15) but will still have
a string length of 9.

See “Large Objects (LOBs)” on page 67 for details on CLOB.

Graphic String

A graphic string is a sequence of double-byte character data.

Fixed-Length Graphic String

GRAPHIC(x) is a fixed length string. The length attribute x
must be between 1 and 127, inclusive.

Varying-Length Graphic String

Varying-length graphic strings are of three types:
VARGRAPHIC, LONG VARGRAPHIC, and DBCLOB. See
“Large Objects (LOBs)” on page 67 for details on DBCLOB.

Binary String

A binary string is a sequence of bytes. It is used to hold nontraditional
data such as pictures. Binary Large OBject (BLOB) is a binary string.
See “Large Objects (LOBs)” on page 67 for more information.

Numbers

All numbers have a sign and a precision. The precision is the number
of bits or digits excluding the sign.

Chapter 2. Organizing Data 5

SMALLINT
A SMALLINT (small integer) is a two byte integer with a
precision of 5 digits.

INTEGER
An INTEGER (large integer) is a four byte integer with a
precision of 10 digits.

BIGINT
A BIGINT (big integer) is an eight byte integer with a precision
of 19 digits.

REAL A REAL (single-precision floating-point number) is a 32 bit
approximation of a real number.

DOUBLE
A DOUBLE (double-precision floating-point number) is a 64 bit
approximation of a real number. DOUBLE is also referred to
as FLOAT.

DECIMAL(p,s)

A DECIMAL is a decimal number. The position of the decimal
point is determined by the precision (p) and the scale (s) of the
number. Precision is the total number of digits and has to be
less than 32. Scale is the number of digits in the fractional part
and is always smaller than or equal to the value of precision.
The decimal value defaults to precision of 5 and scale of 0 if
precision and scale are not specified.

Datetime Values

Datetime values are representations of dates, times, and timestamps (a
character string of 14 digits that represents a valid date and time in
the form yyyyxxddhhmmss). Datetime values can be used in certain
arithmetic and string operations and are compatible with certain
strings, however they are neither strings nor numbers.1

Date A date is a three-part value (year, month, and day).

Time A time is a three-part value (hour, minute, and second)
designating a time of day using a 24-hour clock.

Timestamp
A timestamp is a seven-part value (year, month, day, hour,
minute, second, and microsecond) designating a date and
time.

Null Value

1. In this book we refer to ISO representations of datetime values.

6 SQL Getting Started

The null value is a special value that is distinct from all non-null
values. It means the absence of any other value for that column in the
row. The null value exists for all data types.

The following table highlights characteristics of data types used in the
examples. All numeric data types are defined in a certain range. The
range of numeric data types is also included in this table. You can use
this table as a quick reference for proper data type usage.

Data Type Type Characteristic Example or Range

CHAR(15) fixed-length
character
string

Maximum length of 254 ’Sunny day ’

VARCHAR(15) varying-
length
character
string

Maximum length of 32672 ’Sunny day’

SMALLINT number 2 bytes in length precision
of 5 digits

range is -32768 to 32767

INTEGER number 4 bytes in length precision
of 10 digits

range is -2147483648 to
2147483647

BIGINT number 8 bytes in length precision
of 19 digits

range is
-9223372036854775808 to
9223372036854775807

REAL number single-precision floating
point 32 bit approximation

range is -3.402E+38 to
-1.175E-37 or 1.175E-37 to
-3.402E+38 or zero

DOUBLE number double-precision floating
point 64 bit approximation

range is -1.79769E+308 to
-2.225E-307 or 2.225E-307
to 1.79769E+308 or zero

DECIMAL(5,2) number precision is 5 scale is 2 range is -10**31+1 to
10**31-1

DATE datetime three-part value 1991-10-27

TIME datetime three-part value 13.30.05

TIMESTAMP datetime seven-part value 1991-10-27-13.30.05.000000

See the Data Type Compatibility table in the SQL Reference for more
information.

Chapter 2. Organizing Data 7

8 SQL Getting Started

Chapter 3. Creating Tables and Views

This chapter describes how you can create and manipulate tables and views
in DB2 Universal Database. The relationship of tables and views is explored
through diagrams and examples.

This chapter covers:
v Creating Tables and Creating Views
v Inserting Data
v Changing Data
v Deleting Data
v Using Views to Manipulate Data

Creating Tables

Create your own tables using the CREATE TABLE statement, specifying the
column names and types, as well as constraints. Constraints are discussed in
“Enforcing Business Rules with Constraints and Triggers” on page 51.

The following statement creates a table named PERS, which is similar to the
STAFF table but has an additional column for date of birth.

CREATE TABLE PERS
(ID SMALLINT NOT NULL,

NAME VARCHAR(9),
DEPT SMALLINT WITH DEFAULT 10,
JOB CHAR(5),
YEARS SMALLINT,
SALARY DECIMAL(7,2),
COMM DECIMAL(7,2),
BIRTH_DATE DATE)

This statement creates a table with no data in it. The next section describes
how to insert data into a new table.

As shown in the example, you specify both a name and a data type for each
column. Data types are discussed in “Data Types” on page 5. NOT NULL is
optional and may be specified to indicate that null values are not allowed in a
column. Default values are also optional.

There are many other options you can specify in a CREATE TABLE statement,
such as unique constraints or referential constraints. For more information about
all of the options, see the CREATE TABLE statement in the SQL Reference.

© Copyright IBM Corp. 1993, 2000 9

Inserting Data

When you create a new table, it does not contain any data. To enter new rows
into a table, you use the INSERT statement. This statement has two general
forms:
v With one form, you use a VALUES clause to specify values for the columns

of one or more rows. The next three examples insert data into tables using
this general form.

v With the other form, rather than specifying VALUES, you specify a fullselect
to identify columns from rows contained in other tables and/or views.

Fullselect is a select statement used in INSERT or CREATE VIEW statements,
or following a predicate. A fullselect that is enclosed in parentheses is
commonly referred to as a subquery.

Depending on the default options that you have chosen when creating your
table, for every row you insert, you either supply a value for each column or
accept a default value. The default values for the various data types are
discussed in the SQL Reference.

The following statement uses a VALUES clause to insert one row of data into
the PERS table:

INSERT INTO PERS
VALUES (12, 'Harris', 20, 'Sales', 5, 18000, 1000, '1950-1-1')

The following statement uses the VALUES clause to insert three rows into the
PERS table where only the IDs, the names, and the jobs are known. If a
column is defined as NOT NULL and it does not have a default value, you
must specify a value for it.

The NOT NULL clause on a column definition in a CREATE TABLE statement
can be extended with the words WITH DEFAULT. If a column is defined as
NOT NULL WITH DEFAULT or a constant default such as WITH DEFAULT
10, and you do not specify the column in the column list, the default value is
inserted into that column in the inserted row. For example, in the CREATE
TABLE statement, a default value was only specified for DEPT column and it
was defined to be 10. Hence, the department number (DEPT) is set to 10 and
any other column that is not explicitly given a value is set to NULL.

INSERT INTO PERS (NAME, JOB, ID)
VALUES ('Swagerman', 'Prgmr', 500),

('Limoges', 'Prgmr', 510),
('Li', 'Prgmr', 520)

The following statement returns the result of the insertions:

10 SQL Getting Started

SELECT *
FROM PERS

ID NAME DEPT JOB YEARS SALARY COMM BIRTH_DATE
------ --------- ------ ----- ------ --------- --------- ----------

12 Harris 20 Sales 5 18000.00 1000.00 01/01/1950
500 Swagerman 10 Prgmr - - - -
510 Limoges 10 Prgmr - - - -
520 Li 10 Prgmr - - - -

Note that, in this case, values were not specified for every column. NULL
values are displayed as a dash (–). For this to work, the list of column names
has to correspond both in order and in data type to the values provided in the
VALUES clause. If the list of column names is omitted (as it was in the first
example), the list of data values after VALUES must be in the same order as
the columns in the table into which they are inserted, and the number of
values must equal the number of columns in the table.

Each value must be compatible with the data type of the column into which it
is inserted. If a column is defined as nullable and a value for that column is
not specified, then the value NULL is given to that column in the inserted
row.

The following example inserts the null value into YEARS, COMM and
BIRTH_DATE since values have not been specified for those columns in the
row.

INSERT INTO PERS (ID, NAME, JOB, DEPT, SALARY)
VALUES (410, 'Perna', 'Sales', 20, 20000)

The second form of the INSERT statement is very handy for populating a
table with values from rows in another table. As mentioned, rather than
specifying VALUES, you specify a fullselect to identify columns from rows
contained in other tables and/or views.

The following example selects data from the STAFF table for members of
department 38 and inserts it into the PERS table:

INSERT INTO PERS (ID, NAME, DEPT, JOB, YEARS, SALARY)
SELECT ID, NAME, DEPT, JOB, YEARS, SALARY

FROM STAFF
WHERE DEPT = 38

After this insertion, the following SELECT statement produces a result equal
to the fullselect in the INSERT statement.

SELECT ID, NAME, DEPT, JOB, YEARS, SALARY
FROM PERS
WHERE DEPT = 38

Chapter 3. Creating Tables and Views 11

The result is:

ID NAME DEPT JOB YEARS SALARY
------ --------- ------ ----- ------ ---------

30 Marenghi 38 Mgr 5 17506.75
40 O'Brien 38 Sales 6 18006.00
60 Quigley 38 Sales - 16808.30
120 Naughton 38 Clerk - 12954.75
180 Abrahams 38 Clerk 3 12009.75

Changing Data

Use the UPDATE statement to change the data in a table. With this statement,
you can change the value of one or more columns for each row that satisfies
the search condition of the WHERE clause.

The following example updates information on the employee whose ID is 410:
UPDATE PERS

SET JOB='Prgmr', SALARY = SALARY + 300
WHERE ID = 410

The SET clause specifies the columns to be updated and provides the values.

The WHERE clause is optional and it specifies the rows to be updated. If the
WHERE clause is omitted, the database manager updates each row in the
table or view with the values you supply.

In this example, first the table (PERS) is named, then a condition is specified
for row that is to be updated. The information for employee number 410 has
changed: the employee’s job title changed to Prgmr, and the employee’s salary
increased by $300.

You can change data in more than one row by including a WHERE clause that
applies to two or more rows. The following example increases the salary of
every salesperson by 15%:

UPDATE PERS
SET SALARY = SALARY * 1.15
WHERE JOB = 'Sales'

Deleting Data

Use the DELETE statement to delete rows of data from a table based on the
search condition specified in the WHERE clause. The following example
deletes the row in which the employee ID is 120:

DELETE FROM PERS
WHERE ID = 120

12 SQL Getting Started

The WHERE clause is optional and it specifies the rows to be deleted. If the
WHERE clause is omitted, the database manager deletes all rows in the table
or view.

You can use the DELETE statement to delete more than one row. The
following example deletes all rows in which the employee DEPT is 20:

DELETE FROM PERS
WHERE DEPT = 20

When you delete a row, you remove the entire row, not specific column values
from it.

To delete the definition of a table as well as its contents, issue the DROP
TABLE statement as described in the SQL Reference.

Creating Views

As discussed in “Views” on page 4, a view provides an alternate way of
looking at data in one or more tables. By creating views, you can restrict the
information you want various users to look at. The following diagram shows
the relationship between views and tables.

In Figure 2 on page 14, View_A restricts access to only columns AC1 and AC2
of TABLE_A.

View_AB allows access to column AC3 in TABLE_A and BC2 in TABLE_B.

By creating View_A, you restrict the access users can have to TABLE_A, and,
by creating VIEW_AB, you restrict access to certain columns in both tables.

Chapter 3. Creating Tables and Views 13

The following statement creates a view of the non-managers in department 20
in the STAFF table, where salary and commission do not show through from
the base table.

CREATE VIEW STAFF_ONLY
AS SELECT ID, NAME, DEPT, JOB, YEARS

FROM STAFF
WHERE JOB <> 'Mgr' AND DEPT=20

After creating the view, the following statement displays the contents of the
view:

SELECT *
FROM STAFF_ONLY

This statement produces the following result:

Figure 2. Relationship Between Tables and Views

14 SQL Getting Started

ID NAME DEPT JOB YEARS
------ --------- ------ ----- ------

20 Pernal 20 Sales 8
80 James 20 Clerk -
190 Sneider 20 Clerk 8

As a further example, we can use the STAFF and ORG tables to create a view
that lists the name of each department and the name of the manager of that
department. The following statement creates this view:

CREATE VIEW DEPARTMENT_MGRS
AS SELECT NAME, DEPTNAME

FROM STAFF, ORG
WHERE MANAGER = ID

You can put additional constraints on inserts and updates of a table through a
view by using the WITH CHECK OPTION clause when you create a view.
This clause causes the database manager to validate that any updates of or
insertions into the view conform to the view definition, and to reject those
that do not. If you omit this clause, inserts and updates are not checked
against the view definition. For details on how WITH CHECK OPTION works
refer to the CREATE VIEW statement in the SQL Reference.

Using Views to Manipulate Data
Like the SELECT statement, INSERT, DELETE, and UPDATE statements are
applied to a view just as though it were a real table. The statements
manipulate the data in the underlying base table(s). So when you access the
view again, it is evaluated using the most current base table(s). If you do not
use the WITH CHECK OPTION clause, data that you modify using a view
may not appear in the repeated accesses of the view, as the data may no
longer fit the original view definition.

The following is an example of an update applied to the view
FIXED_INCOME:

CREATE VIEW FIXED_INCOME (LNAME, DEPART, JOBTITLE, NEWSALARY)
AS SELECT NAME, DEPT, JOB, SALARY

FROM PERS
WHERE JOB <> 'Sales' WITH CHECK OPTION

UPDATE FIXED_INCOME
SET NEWSALARY = SALARY * 1.10
WHERE LNAME = 'Li'

The update in the previous view is equivalent to (except for the check option)
to updating the base table PERS:

Chapter 3. Creating Tables and Views 15

UPDATE PERS
SET SALARY = SALARY * 1.10
WHERE NAME = 'Li'

AND JOB <> 'Sales'

Note that because the view is created using the WITH CHECK OPTION for
the constraint JOB <> 'Sales' in CREATE VIEW FIXED_INCOME, the
following update will not be allowed when Limoges moves over to sales:

UPDATE FIXED_INCOME
SET JOBTITLE = 'Sales'
WHERE LNAME = 'Limoges'

Columns defined by expressions such as SALARY + COMM or SALARY *
1.25 cannot be updated. If you define a view containing one or more such
columns, the owner does not receive the UPDATE privilege on these columns.
INSERT statements are not permitted on views containing such columns, but
DELETE statements are.

Consider a PERS table with none of the columns defined as NOT NULL. You
could insert rows into the PERS table through the FIXED_INCOME view even
though it does not contain the ID, YEARS, COMM or BIRTHDATE from
underlying table PERS. Columns not visible through the view are set to NULL
or the default value, as appropriate.

However, the PERS table does have column ID defined as NOT NULL. If you
try to insert a row through the FIXED_INCOME view, the system attempts to
insert NULL values into all the PERS columns that are “invisible” through the
view. Because the ID column is not included in the view and does not permit
null values, the system does not permit the insertion through the view.

For rules and restrictions on modifying views, refer to the CREATE VIEW
statement in the SQL Reference.

16 SQL Getting Started

Chapter 4. Using SQL Statements to Access Data

This section describes how to connect to a database and retrieve data using
SQL statements.

In the examples, we present the statement to be entered followed (in most
cases) by the results that will be displayed when that statement is issued
against the sample database. Note that although we show the statements in
uppercase, you can enter them in any mixture of upper and lowercase
characters (except where they are enclosed in either single quotes (’) or quotes
(’’)).

The SAMPLE database, included with DB2 Universal Database, consists of
several tables, as listed in “Appendix A. Sample Database Tables” on page 71.
This database can be created using the ″First Steps″ installation launchpad.
You can also create the SAMPLE database from the command line. See the
SQL Reference for further details.

Note that additional sample databases are included with DB2 Universal
Database to demonstrate the Data Warehouse Center and OLAP Starter Kit
functionality. The examples in this book use only the general SAMPLE
database.

Depending on how your database has been set up, you may have to qualify
the table names used by prefixing them with the schema name and a period.
For examples in this book, the default schema is assumed to be USERID. So
you could refer to the table ORG as USERID.ORG. Ask your administrator
whether or not this is necessary.

This chapter covers:
v Connecting to a Database
v Investigating Errors
v Selecting Columns and Selecting Rows
v Sorting Rows and Removing Duplicate Rows
v Order of Operations
v Using Expressions to Calculate Values
v Naming Expressions
v Selecting Data from More Than One Table
v Using a Subquery
v Using Functions

© Copyright IBM Corp. 1993, 2000 17

v Grouping

Connecting to a Database

You need to connect to a database before you can use SQL statements to
query or manipulate it. The CONNECT statement associates a database
connection with a user name.

For example, to connect to the SAMPLE database, type the following
command in the DB2 command line processor :

CONNECT TO SAMPLE USER USERID USING PASSWORD

(Be sure to choose a user ID and password that are valid on the server
system.)

In this example, USER is USERID and USING is PASSWORD.

The following message tells you that you have made a successful connection:
Database Connection Information

Database product = DB2/NT 7.1.0
SQL authorization ID = USERID
Local database alias = SAMPLE

Once you are connected, you can start manipulating the database. For further
details on connections, refer to the CONNECT statement in the SQL Reference.

Investigating Errors

Whenever you make a mistake typing in any of the examples, or if an error
occurs during execution of an SQL statement, the database manager returns
an error message. The error message consists of a message identifier, a brief
explanation, and an SQLSTATE.

SQLSTATE errors are error codes common to the DB2 family of products.
SQLSTATE errors conform to the ISO/ANSI SQL92 standard.

For example, if the user ID or password had been incorrect in the CONNECT
statement, the database manager would have returned a message identifier of
SQL1403N and an SQLSTATE of 08004. The message is as follows:

SQL1403N The username and/or password supplied is
incorrect. SQLSTATE=08004

You can get more information about the error message by typing a question
mark (?) then the message identifier or the SQLSTATE:

18 SQL Getting Started

? SQL1403N
OR

? SQL1403
OR

? 08004

Note that the second last line in the description of the error SQL1403N states
that the SQLCODE is -1403. SQLCODE is a product specific error code.
Message identifiers ending with N (Notification) or C (Critical) represent an
error and have negative SQLCODEs. Message identifiers ending with W
(Warning) represent a warning and have positive SQLCODEs.

Selecting Columns

Use the SELECT statement to select specific columns from a table. In the
statement specify a list of column names separated by commas. This list is
referred to as a select list.

The following statement selects department names (DEPTNAME) and
department numbers (DEPTNUMB) from the ORG table of the SAMPLE
database:

SELECT DEPTNAME, DEPTNUMB
FROM ORG

The above statement produces the following result:

DEPTNAME DEPTNUMB
-------------- --------
Head Office 10
New England 15
Mid Atlantic 20
South Atlantic 38
Great Lakes 42
Plains 51
Pacific 66
Mountain 84

By using an asterisk (*) you can select all the columns from the table. The next
example lists all columns and rows from the ORG table:

SELECT *
FROM ORG

This statement produces the following result:
DEPTNUMB DEPTNAME MANAGER DIVISION LOCATION
-------- -------------- ------- ---------- -------------

10 Head Office 160 Corporate New York
15 New England 50 Eastern Boston

Chapter 4. Using SQL Statements to Access Data 19

20 Mid Atlantic 10 Eastern Washington
38 South Atlantic 30 Eastern Atlanta
42 Great Lakes 100 Midwest Chicago
51 Plains 140 Midwest Dallas
66 Pacific 270 Western San Francisco
84 Mountain 290 Western Denver

Selecting Rows

To select specific rows from a table, after the SELECT statement use the
WHERE clause to specify the condition or conditions that a row must meet to
be selected. A criterion for selecting rows from a table is a search condition.

A search condition consists of one or more predicates. A predicate specifies a
condition that is true or false (or unknown) about a row. You can specify
conditions in the WHERE clause by using the following basic predicates:

Predicate Function

x = y x is equal to y

x <> y x is not equal to y

x < y x is less than y

x > y x is greater than y

x <= y x is less than or equal to y

x >= y x is greater than or equal to y

IS NULL/IS NOT NULL tests for null values

When you construct search conditions, be careful to perform arithmetic
operations only on numeric data types, and to make comparisons only among
compatible data types. For example, you can’t compare text strings to
numbers.

If you are selecting rows based on a character value, that value must be
enclosed in single quotation marks (for example, WHERE JOB = 'Clerk') and
each character value must be typed exactly as it exists in the database. If the
data value is lowercase in the database and you type it as uppercase, no rows
will be selected. If you are selecting rows based on a numeric value, that
value must not be enclosed in quotation marks (for example,
WHERE DEPT = 20).

The following example selects only the rows for department 20 from the
STAFF table:

SELECT DEPT, NAME, JOB
FROM STAFF
WHERE DEPT = 20

20 SQL Getting Started

This statement produces the following result:
DEPT NAME JOB
------ --------- -----

20 Sanders Mgr
20 Pernal Sales
20 James Clerk
20 Sneider Clerk

The next example uses AND to specify more than one condition. You can
specify as many conditions as you want. The example selects clerks in
department 20 from the STAFF table:

SELECT DEPT, NAME, JOB
FROM STAFF
WHERE JOB = 'Clerk'
AND DEPT = 20

This statement produces the following result:
DEPT NAME JOB
------ --------- -----

20 James Clerk
20 Sneider Clerk

A null value occurs where no value is entered and the column does not
support a default value. It can also occur where the value is specifically set to
null. It can occur only in columns that are defined to support null values.
Defining and supporting null values in tables are discussed in “Creating
Tables” on page 9.

Use the predicates IS NULL and IS NOT NULL to check for a null value.

The following statement lists employees whose commission is not known:
SELECT ID, NAME

FROM STAFF
WHERE COMM IS NULL

This statement produces the following result:
ID NAME
------ ---------

10 Sanders
30 Marenghi
50 Hanes
100 Plotz
140 Fraye
160 Molinare
210 Lu
240 Daniels

Chapter 4. Using SQL Statements to Access Data 21

260 Jones
270 Lea
290 Quill

The value zero is not the same as the null value. The following statement
selects everyone in a table whose commission is zero:

SELECT ID, NAME
FROM STAFF
WHERE COMM = 0

Because there are no values of zero in the COMM column in the sample table,
the result set returned is empty.

The next example selects all rows where the value of YEARS in the STAFF
table is greater than 9:

SELECT NAME, SALARY, YEARS
FROM STAFF
WHERE YEARS > 9

This statement produces the following result:
NAME SALARY YEARS
--------- --------- ------
Hanes 20659.80 10
Lu 20010.00 10
Jones 21234.00 12
Quill 19818.00 10
Graham 21000.00 13

Sorting Rows

You may want the information returned in a specific order. Use the ORDER
BY clause to sort the information by the values in one or more columns.

The following statement displays the employees in department 84 ordered by
number of years employed:

SELECT NAME, JOB, YEARS
FROM STAFF
WHERE DEPT = 84
ORDER BY YEARS

This statement produces the following result:

22 SQL Getting Started

NAME JOB YEARS
--------- ----- ------
Davis Sales 5
Gafney Clerk 5
Edwards Sales 7
Quill Mgr 10

Specify ORDER BY as the last clause in the entire SELECT statement.
Columns named in this clause can be expressions or any column of the table.
The column names in the ORDER BY clause do not have to be specified in the
select list.

You can order rows in ascending or descending order by explicitly specifying
either ASC or DESC within the ORDER BY clause. If neither is specified, the
rows are automatically ordered in ascending sequence. The following
statement displays the employees in department 84 in descending order by
number of years employed:

SELECT NAME, JOB, YEARS
FROM STAFF
WHERE DEPT = 84
ORDER BY YEARS DESC

This statement produces the following result:
NAME JOB YEARS
--------- ----- ------
Quill Mgr 10
Edwards Sales 7
Davis Sales 5
Gafney Clerk 5

You can order rows by character values as well as numeric values. The
following statement displays the employees in department 84 in alphabetical
order by name:

SELECT NAME, JOB, YEARS
FROM STAFF
WHERE DEPT = 84
ORDER BY NAME

This statement produces the following result:

NAME JOB YEARS
--------- ----- ------
Davis Sales 5
Edwards Sales 7
Gafney Clerk 5
Quill Mgr 10

Chapter 4. Using SQL Statements to Access Data 23

Removing Duplicate Rows

When using the SELECT statement, you may not want duplicate information
to be returned. For example, STAFF has a DEPT column in which several
department numbers are listed more than once, and a JOB column in which
several job descriptions are listed more than once.

To eliminate duplicate rows, use the DISTINCT option on the SELECT clause.
For example, if you insert DISTINCT into the statement, each job within a
department is listed only once:

SELECT DISTINCT DEPT, JOB
FROM STAFF
WHERE DEPT < 30
ORDER BY DEPT, JOB

This statement produces the following result:
DEPT JOB
------ -----

10 Mgr
15 Clerk
15 Mgr
15 Sales
20 Clerk
20 Mgr
20 Sales

DISTINCT has eliminated all rows that contain duplicate data in the set of
columns specified in the SELECT statement.

Order of Operations

It is important to take into account the order of operations. The output from
one clause is the input to the next one, as stated in the list below. An example
where order of operations is a consideration is presented in “Naming
Expressions” on page 25.

The following sequence of operations is not necessarily the way that the
operations are performed within the DB2 code. This simple explanation
merely allows for a more intuitive means of thinking about queries. The
sequence of operations is as follows:
1. FROM clause
2. WHERE clause
3. GROUP BY clause
4. HAVING clause
5. SELECT clause
6. ORDER BY clause

24 SQL Getting Started

Using Expressions to Calculate Values

An expression is a calculation or function that you include in a statement. The
following statement calculates what the salaries for each employee in
department 38 would be if each received a $500 bonus:

SELECT DEPT, NAME, SALARY + 500
FROM STAFF
WHERE DEPT = 38
ORDER BY 3

This result is:
DEPT NAME 3
------ --------- ----------------

38 Abrahams 12509.75
38 Naughton 13454.75
38 Quigley 17308.30
38 Marenghi 18006.75
38 O'Brien 18506.00

Note that the column name for the third column is a number. This is a system
generated number, since SALARY+500 does not specify a column name. Later
on this number is used in the ORDER BY clause to refer to the third column.
“Naming Expressions” talks about how to give meaningful names to
expressions.

You can form arithmetic expressions using the basic arithmetic operators for
addition (+), subtraction (−), multiplication (*), and division (⁄).

The operators can operate on numeric values from several different types of
operands, some of which are:
v Column names (as in RATE * HOURS)
v Constant values (as in RATE * 1.07)
v Scalar functions (as in LENGTH(NAME) + 1).

Naming Expressions

The optional AS clause lets you assign a meaningful name to an expression,
which makes referring back to the expression easier. You can use an AS clause
to provide a name for any item in the select list.

The following statement displays all employees whose salary plus commission
is less than $13, 000. The expression SALARY + COMM is named PAY:

SELECT NAME, JOB, SALARY + COMM AS PAY
FROM STAFF
WHERE (SALARY + COMM) < 13000
ORDER BY PAY

Chapter 4. Using SQL Statements to Access Data 25

This statement produces the following result:
NAME JOB PAY
--------- ----- ----------
Yamaguchi Clerk 10581.50
Burke Clerk 11043.50
Scoutten Clerk 11592.80
Abrahams Clerk 12246.25
Kermisch Clerk 12368.60
Ngan Clerk 12714.80

By using the AS clause, you can refer to a particular column name rather than
the system generated number in the ORDER BY clause. In this example we
compare (SALARY + COMM) with 13000 in the WHERE clause, instead of
using the name PAY. This is a result of the order of operations. The WHERE
clause is evaluated before (SALARY + COMM) is given the name PAY,
because the SELECT clause is executed after the WHERE clause. Hence, PAY
cannot be used in the predicate.

Selecting Data from More Than One Table

You can use the SELECT statement to produce reports that contain
information from two or more tables. This is commonly referred to as a join.
For example, you can join data from the STAFF and ORG tables to form a
new table. To join two tables, specify the columns you want to be displayed in
the SELECT clause, the table names in a FROM clause and the search
condition in the WHERE clause. The WHERE clause is optional.

The next example associates the name of each manager with a department
name. You need to select information from two tables since the employee
information (STAFF table) and the departmental information (ORG table) are
stored separately. The following query selects the NAME and DEPTNAME
columns for STAFF and ORG tables, respectively. The search condition
narrows down the selection to rows where the values in the MANAGER
column are the same as the values in the ID column:

SELECT DEPTNAME, NAME
FROM ORG, STAFF
WHERE MANAGER = ID

Figure 3 on page 27 demonstrates how columns in two different tables are
compared. The boxed values indicate a match where the search condition has
been satisfied.

26 SQL Getting Started

The SELECT statement produces the following result:
DEPTNAME NAME
-------------- ---------
Mid Atlantic Sanders
South Atlantic Marenghi
New England Hanes
Great Lakes Plotz
Plains Fraye
Head Office Molinare
Pacific Lea
Mountain Quill

The result lists the name of each manager and his or her department.

Using a Subquery

When you write an SQL SELECT statement, you can place additional SELECT
statements within the WHERE clause. Each additional SELECT starts a
subquery.

A subquery can then, in turn, include another separate subquery, whose result
is substituted into the original subquery’s WHERE clause. In addition, a
WHERE clause can include subqueries in more than one search condition. The
subquery can refer to tables and columns that are different than the ones used
in the main query.

The following statement selects the division and location from the ORG table
of the employee whose ID in the STAFF table is 280:

ID NAME

STAFF
DEPT J

10

20

30

40

50

60

Sanders

Pernal

Marenghi

O'Brien

Hanes

Quigley

20

20

38

38

15

38

15

Mg

Sa

Mg

Sa

Mg

Sa

Sa

ORG
DEPTNUMB DEPTNAME MANAGER D

10

15

20

38

42

51

Head Office

New England

Mid Atlantic

South Atlantic

Great Lakes

Plains

160

50

10

30

100

140

270

Co

Ea

Ea

Ea

Mi

Mi

We

MANAGER=ID ?

Figure 3. Selecting from STAFF and ORG tables

Chapter 4. Using SQL Statements to Access Data 27

SELECT DIVISION, LOCATION
FROM ORG
WHERE DEPTNUMB = (SELECT DEPT

FROM STAFF
WHERE ID = 280)

When processing a statement, DB2 first determines the result of the subquery.
The result from this example’s subquery is 66, since the employee with ID 280
is in department 66. The final result is then taken from the row of the ORG
table whose DEPTNUMB column has the value of 66. The final result is:

DIVISION LOCATION
---------- -------------
Western San Francisco

When you use a subquery, the database manager evaluates it and substitutes
the resulting value directly into the WHERE clause.

Subqueries are further discussed in “Correlated Subqueries” on page 39.

Using Functions

This section gives you a brief introduction to functions that will be used in
the examples throughout the book. A database function is a relationship
between a set of input data values and a result value.

Functions can be either built-in or user-defined. DB2 Universal Database
delivers many built-in and preinstalled user-defined functions.

You can find the built-in functions in the SYSIBM schema; and the
preinstalled user-defined functions are in the SYSFUN schema. SYSIBM and
SYSFUN are reserved schemas.

The built-in and preinstalled user-defined functions will never satisfy all user
requirements. Therefore, application developers may need to create their own
suite of functions, specifically aimed at their applications. User-defined
functions make this possible, expanding the scope of DB2 Universal Database
to include, for example, customized business or scientific functions. This is
further discussed in the “User-Defined Functions” on page 66.

Column Functions
Column functions operate on a set of values in a column to derive a single
result value. The following are just a few examples of column functions. For a
full list, refer to the SQL Reference.

AVG Returns the sum of the values in a set divided by the number
of values in that set

28 SQL Getting Started

COUNT Returns the number of rows or values in a set of rows or
values

MAX Returns the largest value in a set of values

MIN Returns the smallest value in a set of values

The following statement selects the maximum salary from the STAFF table:
SELECT MAX(SALARY)

FROM STAFF

This statement returns the value 22959.20 from the STAFF sample table.

The next example selects the names and salaries of employees whose income
is more than the average income yet have been with the company less than
the average number of years.

SELECT NAME, SALARY
FROM STAFF
WHERE SALARY > (SELECT AVG(SALARY) FROM STAFF)
AND YEARS < (SELECT AVG(YEARS) FROM STAFF)

This statement produces the following result:
NAME SALARY
--------- ---------
Marenghi 17506.75
Daniels 19260.25
Gonzales 16858.20

In the above example, in the WHERE clause, the column function is stated in
a subquery as opposed to being directly implemented (for example: WHERE
SALARY > AVG(SALARY)). Column functions cannot be stated in the
WHERE clause. This is due to the order of operations. Think of the WHERE
clause as being evaluated before the SELECT clause. Consequently, when the
WHERE clause is being evaluated, the column function does not have access
to the set of values. This set of values is selected at a later time by the
SELECT clause.

You can use the DISTINCT element as part of the argument of a column
function to eliminate duplicate values before a function is applied. Thus,
COUNT(DISTINCT WORKDEPT) computes the number of different
departments.

Scalar Functions
A scalar function performs an operation on a single value to return another
single value. The following are just a few examples of scalar functions
provided by DB2 Universal Database.

ABS Return the absolute value of a number

Chapter 4. Using SQL Statements to Access Data 29

HEX Returns the hexadecimal representation of a value

LENGTH Returns the number of bytes in an argument (for a graphic
string it returns the number of double-byte characters.)

YEAR Extract the year portion of a datetime value

For a detailed list and description of scalar functions refer to the SQL
Reference.

The following statement returns the department names from the ORG table
together with the length of each of these names:

SELECT DEPTNAME, LENGTH(DEPTNAME)
FROM ORG

This statement produces the following result:
DEPTNAME 2
-------------- -----------
Head Office 11
New England 11
Mid Atlantic 12
South Atlantic 14
Great Lakes 11
Plains 6
Pacific 7
Mountain 8

Note: Since the AS clause was not used to give a meaningful name to
LENGTH(DEPTNAME), a system generated number appears in the second
column.

Table Functions
Table functions return columns of a table, resembling the table created by a
simple CREATE TABLE statement.

A table function can only be used in the FROM clause of an SQL statement.

The only table function currently supported in DB2 Universal Database is
SQLCACHE_SNAPSHOT.

SQLCACHE_SNAPSHOT
Returns the results of a snapshot of the DB2 dynamic SQL
statement cache as a table.

Grouping

DB2 Universal Database has the capability of analyzing data based on
particular columns of a table.

30 SQL Getting Started

You can organize rows according to a grouping structure defined in a GROUP
BY clause. In its simplest form, a group is a set of rows, each having identical
values in the ″GROUP BY″ columns. The column names in the SELECT clause
must be either a grouping column or a column function. Column functions
return a value for each group defined by the GROUP BY clause. Each group is
represented by a single row in the result set. The following example produces
a result that lists the maximum salary for each department number:

SELECT DEPT, MAX(SALARY) AS MAXIMUM
FROM STAFF
GROUP BY DEPT

This statement produces the following result:
DEPT MAXIMUM
------ ---------

10 22959.20
15 20659.80
20 18357.50
38 18006.00
42 18352.80
51 21150.00
66 21000.00
84 19818.00

Note that the MAX(SALARY) is calculated for each department, a group
defined by the GROUP BY clause, not the entire company.

Using a WHERE Clause with a GROUP BY Clause
A grouping query can have a standard WHERE clause that eliminates
non-qualifying rows before the groups are formed and the column functions
are computed. You have to specify the WHERE clause before the GROUP BY
clause. For example:

SELECT WORKDEPT, EDLEVEL, MAX(SALARY) AS MAXIMUM
FROM EMPLOYEE
WHERE HIREDATE > '1979-01-01'
GROUP BY WORKDEPT, EDLEVEL
ORDER BY WORKDEPT, EDLEVEL

The result is:
WORKDEPT EDLEVEL MAXIMUM
-------- ------- -----------
D11 17 18270.00
D21 15 27380.00
D21 16 36170.00
D21 17 28760.00
E11 12 15340.00
E21 14 26150.00

Note that every column name specified in the SELECT statement is also
mentioned in the GROUP BY clause. Not mentioning the column names in

Chapter 4. Using SQL Statements to Access Data 31

both places will give you an error. The GROUP BY clause returns a row for
each unique combination of WORKDEPT and EDLEVEL.

Using the HAVING Clause After the GROUP BY Clause
You can apply a qualifying condition to groups so that DB2 returns a result
only for the groups that satisfy the condition. To do this, include a HAVING
clause after the GROUP BY clause. A HAVING clause can contain one or more
predicates connected by ANDs and ORs. Each predicate compares a property
of the group (such as AVG(SALARY)) with either:
v Another property of the group

For example:
HAVING AVG(SALARY) > 2 * MIN(SALARY)

v A constant
For example:
HAVING AVG(SALARY) > 20000

For example, the following query finds the maximum and minimum salary of
departments with more than 4 employees:

SELECT WORKDEPT, MAX(SALARY) AS MAXIMUM, MIN(SALARY) AS MINIMUM
FROM EMPLOYEE
GROUP BY WORKDEPT
HAVING COUNT(*) > 4
ORDER BY WORKDEPT

This statement produces the following result:
WORKDEPT MAXIMUM MINIMUM
-------- ----------- -----------
D11 32250.00 18270.00
D21 36170.00 17250.00
E11 29750.00 15340.00

It is possible (though unusual) for a query to have a HAVING clause but no
GROUP BY clause. In this case, DB2 treats the entire table as one group.
Because the table is treated as a single group, you can have at most one result
row. If the HAVING condition is true for the table as a whole, the selected
result (which must consist entirely of column functions) is returned; otherwise
no rows are returned.

32 SQL Getting Started

Chapter 5. Expressions and Subqueries

DB2 provides flexibility in expressing queries. This chapter describes a few of
the important methods available to express complex queries.

This chapter gives a comprehensive description of the following:
v Scalar Fullselects
v Casting Data Types
v Case Expressions
v Table Expressions
v Correlation Names

Scalar Fullselects

A fullselect is a form of query that can be used in SQL statements. A scalar
fullselect is a fullselect that returns one row containing only one value. Scalar
fullselects are useful for retrieving data values from the database for use in an
expression.
v The following example lists names of employees who have a salary greater

than the average salary of all employees. The scalar fullselect within the
query is the select statement in parentheses.

SELECT LASTNAME, FIRSTNME
FROM EMPLOYEE
WHERE SALARY > (SELECT AVG(SALARY)

FROM EMPLOYEE)

v This example finds the average salary of the employees in the STAFF table
and the average salary of the employees in the EMPLOYEE table.

SELECT AVG(SALARY) AS "Average_Employee",
(SELECT AVG(SALARY) AS "Average_Staff" FROM STAFF)

FROM EMPLOYEE

Casting Data Types

There may be times when you need to convert values from one data type to
another, for example, from a numeric value to a character string. To convert a
value to a different type, use the CAST specification.

Another possible use for a cast specification is to truncate a very long
character string. In the EMP_RESUME table the column RESUME is
CLOB(5K). You may want to display only the first 370 characters containing

© Copyright IBM Corp. 1993, 2000 33

the personal information of the applicant. To display the first 370 characters of
the ASCII format of the resumes from the table EMP_RESUME, issue the
following query:

SELECT EMPNO, CAST(RESUME AS VARCHAR(370))
FROM EMP_RESUME
WHERE RESUME_FORMAT = 'ascii'

A warning is issued informing you that values longer than 370 characters are
truncated.

You can cast NULL values to other data types that are more convenient for
manipulation in a query. “Common Table Expressions” on page 36 is an
example of using casting for this purpose.

Case Expressions

You can use CASE expressions in SQL statements to easily manipulate the
data representation of a table. This provides a powerful conditional expression
capability that is similar in concept to CASE statements in some programming
languages.
v To change department numbers from the DEPTNAME column in ORG table

into meaningful words, enter the following query:
SELECT DEPTNAME,

CASE DEPTNUMB
WHEN 10 THEN 'Marketing'
WHEN 15 THEN 'Research'
WHEN 20 THEN 'Development'
WHEN 38 THEN 'Accounting'
ELSE 'Sales'

END AS FUNCTION
FROM ORG

The result is:
DEPTNAME FUNCTION
-------------- -----------
Head Office Marketing
New England Research
Mid Atlantic Development
South Atlantic Accounting
Great Lakes Sales
Plains Sales
Pacific Sales
Mountain Sales

v You can use CASE expressions to protect against exceptions such as
division by zero. In the following example, if the employee has no bonus or
commission payment, the statement condition prevents an error by
avoiding the division operation:

34 SQL Getting Started

SELECT LASTNAME, WORKDEPT FROM EMPLOYEE
WHERE(CASE

WHEN BONUS+COMM=0 THEN NULL
ELSE SALARY/(BONUS+COMM)

END) > 10

v You can use a CASE expression to produce a ratio of the sum of a subset of
values from one column to the sum of all the values from that column. This
ratio can be contained in a single statement that uses a CASE expression;
this expression requires only a single pass through the data. Without a
CASE expression, at least two passes are required to perform the same
calculation.
The following example computes the ratio of the sum of the salaries of
department 20 to the total of all salaries using a CASE expression:

SELECT CAST(CAST (SUM(CASE
WHEN DEPT = 20 THEN SALARY
ELSE 0

END) AS DECIMAL(7,2))/
SUM(SALARY) AS DECIMAL (3,2))

FROM STAFF

The result is 0.11. Note that the CAST functions ensure that the precision of
the result is preserved.

v You can use a CASE expression to evaluate a simple function instead of
calling the function itself, which would require additional overhead. For
example:

CASE
WHEN X<0 THEN -1
WHEN X=0 THEN 0
WHEN X>0 THEN 1

END

This expression has the same result as the SIGN user-defined function in
the SYSFUN schema.

Table Expressions

If you just need the definition of a view for a single query, you can use a table
expression.

Table expressions are temporary and are only valid for the life of the SQL
statement; they cannot be shared like views, but they allow more flexibility
than views.

This section describes how to use common table expressions and nested table
expressions in queries.

Chapter 5. Expressions and Subqueries 35

Nested Table Expressions
A nested table expression is a temporary view where the definition is nested
(defined directly) in the FROM clause of the main query.

The following query uses a nested table expression to find the average total
pay, education level and year of hire, for those with an education level greater
than 16:

SELECT EDLEVEL, HIREYEAR, DECIMAL(AVG(TOTAL_PAY),7,2)
FROM (SELECT EDLEVEL, YEAR(HIREDATE) AS HIREYEAR,

SALARY+BONUS+COMM AS TOTAL_PAY
FROM EMPLOYEE
WHERE EDLEVEL > 16) AS PAY_LEVEL

GROUP BY EDLEVEL, HIREYEAR
ORDER BY EDLEVEL, HIREYEAR

The result is as follows:
EDLEVEL HIREYEAR 3
------- ----------- ---------

17 1967 28850.00
17 1973 23547.00
17 1977 24430.00
17 1979 25896.50
18 1965 57970.00
18 1968 32827.00
18 1973 45350.00
18 1976 31294.00
19 1958 51120.00
20 1975 42110.00

This query uses a nested table expression to first extract the year of hire from
the HIREDATE column so that it can subsequently be used in the GROUP BY
clause. You may not want to create this as a view, if you intend to perform
similar queries using different values for EDLEVEL.

The scalar built-in function DECIMAL is used in this example. DECIMAL
returns a decimal representation of a number or a character string. For more
details on functions refer to the SQL Reference.

Common Table Expressions
A common table expression is a table expression that you create for use
throughout a complex query. Define and name it at the start of the query
using a WITH clause. Repeated references to a common table expression use
the same result set. By comparison, if you used nested table expressions or
views, the result set would be regenerated each time, with possibly different
results.

The following example lists all the people in the company who have an
education level greater than 16, who make less pay on average than those

36 SQL Getting Started

people who were hired in the same year and who have the same education.
The parts of the query are described in further detail following the query.

�1�

WITH
PAYLEVEL AS

(SELECT EMPNO, EDLEVEL, YEAR(HIREDATE) AS HIREYEAR,
SALARY+BONUS+COMM AS TOTAL_PAY

FROM EMPLOYEE
WHERE EDLEVEL > 16),

�2�

PAYBYED (EDUC_LEVEL, YEAR_OF_HIRE, AVG_TOTAL_PAY) AS
(SELECT EDLEVEL, HIREYEAR, AVG(TOTAL_PAY)

FROM PAYLEVEL
GROUP BY EDLEVEL, HIREYEAR)

�3�

SELECT EMPNO, EDLEVEL, YEAR_OF_HIRE, TOTAL_PAY, DECIMAL(AVG_TOTAL_PAY,7,2)
FROM PAYLEVEL, PAYBYED
WHERE EDLEVEL = EDUC_LEVEL

AND HIREYEAR = YEAR_OF_HIRE
AND TOTAL_PAY < AVG_TOTAL_PAY

�1� This is a common table expression with the name PAYLEVEL. This
result table includes an employee number, the year that the person
was hired, the total pay for that employee, and his or her education
level. Only rows for employees with an education level greater than
16 are included.

�2� This is a common table expression with the name PAYBYED (or PAY
BY EDucation). It uses the PAYLEVEL table that was created in the
previous common table expression to determine the education level,
hire year, and average pay of employees within each education level,
hired in the same year. The columns returned by this table have been
given different names (EDUC_LEVEL, for example) from the column
names used in the select list. This produces a result set named
PAYBYED that is the same as the result we produced in the Nested
Table Expression example.

�3� Finally, we get to the actual query that produces the desired result.
The two tables (PAYLEVEL, PAYBYED) are joined to determine those
individuals who have total pay that is less than the average pay for
people hired in the same year. Note that PAYBYED is based on
PAYLEVEL. So PAYLEVEL is effectively accessed twice in the
complete statement. Both times the same set of rows are used in
evaluating the query.

The final result is as follows:

Chapter 5. Expressions and Subqueries 37

EMPNO EDLEVEL YEAR_OF_HIRE TOTAL_PAY 5
------ ------- ------------ ------------- ---------
000210 17 1979 20132.00 25896.50

Correlation Names

A correlation name is an identifier used for distinguishing multiple uses of an
object. A correlation name can be defined in the FROM clause of a query and
in the first clause of an UPDATE or DELETE statement. It can be associated
with a table, view, or a nested table expression but only within the context
that it is defined.

For example, the clause FROM STAFF S, ORG O establishes S and O as the
correlation names for STAFF and ORG, respectively.

SELECT NAME, DEPTNAME
FROM STAFF S, ORG O
WHERE O.MANAGER = S.ID

Once you have defined a correlation name, you can only use the correlation
name to qualify the object. For example, in the above example, if we had
stated ORG.MANAGER=STAFF.ID the statement would fail.

You can also use a correlation name as a shorter name for referring to a
database object. Typing just S is easier than typing STAFF.

By using correlation names, you can make duplicates of an object. This is
useful when you need to compare entries of a table with itself. In the
following example, table EMPLOYEE is compared with another instance of
itself to find the managers of all employees. It displays the name of the
employees who are not designers, the name of their manager and the
department number.

SELECT E2.FIRSTNME, E2.LASTNAME, E2.JOB, E1.FIRSTNME AS MGR_FIRSTNAME,
E1.LASTNAME AS MGR_LASTNAME, E1.WORKDEPT

FROM EMPLOYEE E1, EMPLOYEE E2
WHERE E1.WORKDEPT = E2.WORKDEPT

AND E1.JOB = 'MANAGER'
AND E2.JOB <> 'MANAGER'
AND E2.JOB <> 'DESIGNER'

This statement produces the following result:
FIRSTNME LASTNAME JOB MGR_FIRSTNAME MGR_LASTNAME WORKDEPT
------------ ---------- -------- ------------- --------------- --------
DOLORES QUINTANA ANALYST SALLY KWAN C01
HEATHER NICHOLLS ANALYST SALLY KWAN C01
JAMES JEFFERSON CLERK EVA PULASKI D21
SALVATORE MARINO CLERK EVA PULASKI D21
DANIEL SMITH CLERK EVA PULASKI D21
SYBIL JOHNSON CLERK EVA PULASKI D21

38 SQL Getting Started

MARIA PEREZ CLERK EVA PULASKI D21
ETHEL SCHNEIDER OPERATOR EILEEN HENDERSON E11
JOHN PARKER OPERATOR EILEEN HENDERSON E11
PHILIP SMITH OPERATOR EILEEN HENDERSON E11
MAUDE SETRIGHT OPERATOR EILEEN HENDERSON E11
RAMLAL MEHTA FIELDREP THEODORE SPENSER E21
WING LEE FIELDREP THEODORE SPENSER E21
JASON GOUNOT FIELDREP THEODORE SPENSER E21

Correlated Subqueries

A subquery that is allowed to refer to any of the previously mentioned tables
is known as a correlated subquery. We also say that the subquery has a
correlated reference to a table in the main query.

The following example uses an uncorrelated subquery to list the employee
number and name of employees in department ’A00’ with a salary greater
than the average salary of the department:

SELECT EMPNO, LASTNAME
FROM EMPLOYEE
WHERE WORKDEPT = 'A00'

AND SALARY > (SELECT AVG(SALARY)
FROM EMPLOYEE
WHERE WORKDEPT = 'A00')

This statement produces the following result:
EMPNO LASTNAME
------ ---------------
000010 HAAS
000110 LUCCHESSI

If you want to know the average salary for every department, the subquery
needs to be evaluated once for every department. You can do this through the
correlation capability of SQL, which permits you to write a subquery that is
executed repeatedly, once for each row of the table identified in the outer-level
query.

The following example uses a correlated subquery to list all the employees
whose salary is higher than the average salary of their department:

SELECT E1.EMPNO, E1.LASTNAME, E1.WORKDEPT
FROM EMPLOYEE E1
WHERE SALARY > (SELECT AVG(SALARY)

FROM EMPLOYEE E2
WHERE E2.WORKDEPT = E1.WORKDEPT)

ORDER BY E1.WORKDEPT

Chapter 5. Expressions and Subqueries 39

In this query, the subquery is evaluated once for every department. The result
is:

EMPNO LASTNAME WORKDEPT
------ --------------- --------
000010 HAAS A00
000110 LUCCHESSI A00
000030 KWAN C01
000060 STERN D11
000150 ADAMSON D11
000170 YOSHIMURA D11
000200 BROWN D11
000220 LUTZ D11
000070 PULASKI D21
000240 MARINO D21
000270 PEREZ D21
000090 HENDERSON E11
000280 SCHNEIDER E11
000100 SPENSER E21
000330 LEE E21
000340 GOUNOT E21

To write a query with a correlated subquery, use the same basic format of an
ordinary outer query with a subquery. However, in the FROM clause of the
outer query, just after the table name, place a correlation name. The subquery
may then contain column references qualified by the correlation name. For
example, if E1 is a correlation name, then E1.WORKDEPT means the
WORKDEPT value of the current row of the table in the outer query. The
subquery is (conceptually) reevaluated for each row of the table in the outer
query.

By using a correlated subquery, you let the system do the work for you and
reduce the amount of code you need to write within your application.

Unqualified correlated references are allowed in DB2. For example, the table
EMPLOYEE has a column named LASTNAME, but the table SALES has a
column named SALES_PERSON, and no column named LASTNAME.

SELECT LASTNAME, FIRSTNME, COMM
FROM EMPLOYEE
WHERE 3 > (SELECT AVG(SALES)

FROM SALES
WHERE LASTNAME = SALES_PERSON)

In this example, the system checks the innermost FROM clause for a
LASTNAME column. Not finding one, it then checks the next innermost
FROM clause (which in this case is the outer FROM clause). While not always
necessary, qualifying correlated references is recommended to improve the
readability of the query and to ensure that you are getting the result that you
intend.

40 SQL Getting Started

Implementing a Correlated Subquery
When would you want to use a correlated subquery? The use of a column
function is sometimes a clue.

Let’s say you want to list the employees whose level of education is higher
than the average for their department.

First, you must determine the select-list items. The problem says “List the
employees”. This implies that LASTNAME from the EMPLOYEE table should
be sufficient to uniquely identify employees. The problem also states the level
of education (EDLEVEL) and the employees’ departments (WORKDEPT) as
conditions. While the problem does not explicitly ask for columns to be
displayed, including them in the select-list will help illustrate the solution. A
part of the query can now be constructed:

SELECT LASTNAME, WORKDEPT, EDLEVEL
FROM EMPLOYEE

Next, a search condition (WHERE clause) is needed. The problem statement
says, “...whose level of education is higher than the average for that
employee’s department”. This means that for every employee in the table, the
average education level for that employee’s department must be computed.
This statement fits the description of a correlated subquery. Some unknown
property (the average level of education of the current employee’s
department) is being computed for each row. A correlation name is needed for
the EMPLOYEE table:

SELECT LASTNAME, WORKDEPT, EDLEVEL
FROM EMPLOYEE E1

The subquery needed is simple. It computes the average level of education for
each department. The complete SQL statement is:

SELECT LASTNAME, WORKDEPT, EDLEVEL
FROM EMPLOYEE E1
WHERE EDLEVEL > (SELECT AVG(EDLEVEL)

FROM EMPLOYEE E2
WHERE E2.WORKDEPT = E1.WORKDEPT)

The result is:
LASTNAME WORKDEPT EDLEVEL
--------------- -------- -------
HAAS A00 18
KWAN C01 20
PULASKI D21 16
HENDERSON E11 16
LUCCHESSI A00 19
PIANKA D11 17
SCOUTTEN D11 17
JONES D11 17
LUTZ D11 18

Chapter 5. Expressions and Subqueries 41

MARINO D21 17
JOHNSON D21 16
SCHNEIDER E11 17
MEHTA E21 16
GOUNOT E21 16

Suppose that instead of listing the employee’s department number, you list
the department name. The information you need (DEPTNAME) is in a
separate table (DEPARTMENT). The outer-level query that defines a
correlation variable can also be a join query (see “Selecting Data from More
Than One Table” on page 26 for details).

When you use joins in an outer-level query, list the tables to be joined in the
FROM clause, and place the correlation name next to the appropriate table
name.

To modify the query to list the department’s name instead of its number,
replace WORKDEPT by DEPTNAME in the select-list. The FROM clause must
now also include the DEPARTMENT table, and the WHERE clause must
express the appropriate join condition.

This is the modified query:
SELECT LASTNAME, DEPTNAME, EDLEVEL

FROM EMPLOYEE E1, DEPARTMENT
WHERE E1.WORKDEPT = DEPARTMENT.DEPTNO
AND EDLEVEL > (SELECT AVG(EDLEVEL)

FROM EMPLOYEE E2
WHERE E2.WORKDEPT = E1.WORKDEPT)

This statement produces the following result:
LASTNAME DEPTNAME EDLEVEL
--------------- ----------------------------- -------
HAAS SPIFFY COMPUTER SERVICE DIV. 18
LUCCHESSI SPIFFY COMPUTER SERVICE DIV. 19
KWAN INFORMATION CENTER 20
PIANKA MANUFACTURING SYSTEMS 17
SCOUTTEN MANUFACTURING SYSTEMS 17
JONES MANUFACTURING SYSTEMS 17
LUTZ MANUFACTURING SYSTEMS 18
PULASKI ADMINISTRATION SYSTEMS 16
MARINO ADMINISTRATION SYSTEMS 17
JOHNSON ADMINISTRATION SYSTEMS 16
HENDERSON OPERATIONS 16
SCHNEIDER OPERATIONS 17
MEHTA SOFTWARE SUPPORT 16
GOUNOT SOFTWARE SUPPORT 16

The above examples show that the correlation name used in a subquery must
be defined in the FROM clause of some query that contains the correlated
subquery. However, this containment may involve several levels of nesting.

42 SQL Getting Started

Suppose that some departments have only a few employees and therefore
their average education level may be misleading. You might decide that in
order for the average level of education to be a meaningful number to
compare an employee against, there must be at least five employees in a
department. So now we have to list the employees whose level of education is
higher than the average for that employee’s department, and only consider
departments with at least five employees.

The problem implies another subquery because, for each employee in the
outer-level query, the total number of employees in that person’s department
must be counted:

SELECT COUNT(*)
FROM EMPLOYEE E3
WHERE E3.WORKDEPT = E1.WORKDEPT

Only if the count is greater than or equal to 5 is an average to be computed:
SELECT AVG(EDLEVEL)

FROM EMPLOYEE E2
WHERE E2.WORKDEPT = E1.WORKDEPT
AND 5 <= (SELECT COUNT(*)

FROM EMPLOYEE E3
WHERE E3.WORKDEPT = E1.WORKDEPT)

Finally, only those employees whose level of education is greater than the
average for that department are included:

SELECT LASTNAME, DEPTNAME, EDLEVEL
FROM EMPLOYEE E1, DEPARTMENT
WHERE E1.WORKDEPT = DEPARTMENT.DEPTNO
AND EDLEVEL >
(SELECT AVG(EDLEVEL)

FROM EMPLOYEE E2
WHERE E2.WORKDEPT = E1.WORKDEPT
AND 5 <=
(SELECT COUNT(*)

FROM EMPLOYEE E3
WHERE E3.WORKDEPT = E1.WORKDEPT))

This statement produces the following result:
LASTNAME DEPTNAME EDLEVEL
--------------- ----------------------------- -------
PIANKA MANUFACTURING SYSTEMS 17
SCOUTTEN MANUFACTURING SYSTEMS 17
JONES MANUFACTURING SYSTEMS 17
LUTZ MANUFACTURING SYSTEMS 18
PULASKI ADMINISTRATION SYSTEMS 16
MARINO ADMINISTRATION SYSTEMS 17
JOHNSON ADMINISTRATION SYSTEMS 16
HENDERSON OPERATIONS 16
SCHNEIDER OPERATIONS 17

Chapter 5. Expressions and Subqueries 43

44 SQL Getting Started

Chapter 6. Using Operators and Predicates in Queries

In DB2 Universal Database you can combine queries with different set
operators and construct complex conditional statements with quantified
predicates.

This chapter explains how to:
v Combine different tables with UNION, EXCEPT and INTERSECT set

operators
v Construct complex conditions for queries with quantified predicates. Basic

predicates were discussed briefly in “Selecting Rows” on page 20.

Combining Queries by Set Operators

The UNION, EXCEPT, and INTERSECT set operators enable you to combine
two or more outer-level queries into a single query. Each query connected by
these set operators is executed and the individual results are combined. Each
operator produces a different result.

UNION Operator
The UNION operator derives a result table by combining two other result
tables (for example TABLE1 and TABLE2) and eliminating any duplicate rows
in the tables. When ALL is used with UNION (that is, UNION ALL),
duplicate rows are not eliminated. In either case, each row of the derived
table is a row from either TABLE1 or TABLE2.

In the following example of the UNION operator, the query returns the names
of all persons that have a salary greater than $21, 000, or that have managerial
responsibilities and have been working for less than 8 years:

�1�

SELECT ID, NAME FROM STAFF WHERE SALARY > 21000
UNION

�2�

SELECT ID, NAME FROM STAFF WHERE JOB='Mgr' AND YEARS < 8
ORDER BY ID

The results of the individual queries are:

�1�

© Copyright IBM Corp. 1993, 2000 45

ID NAME
------ ---------

140 Fraye
160 Molinare
260 Jones

�2�

ID NAME
------ ---------

10 Sanders
30 Marenghi
100 Plotz
140 Fraye
160 Molinare
240 Daniels

The database manager combines the results of both queries, eliminates the
duplicates, and returns the final result in ascending order.

ID NAME
------ ---------

10 Sanders
30 Marenghi
100 Plotz
140 Fraye
160 Molinare
240 Daniels
260 Jones

If you use the ORDER BY clause in a query with any set operator, you must
write it after the last query. The system applies the ordering to the combined
answer set.

If the column name in the two tables is different, the combined result table
does not have names for the corresponding columns. Instead, the columns are
numbered in the order in which they appear. So, if you want the result table
to be ordered, you have to specify the column number in the ORDER BY
clause.

EXCEPT Operator
The EXCEPT operator derives a result table by including all rows that are in
TABLE1 but not in TABLE2, and eliminating all duplicate rows. When you
use ALL with EXCEPT (EXCEPT ALL), the duplicate rows are not eliminated.

In the following example of the EXCEPT operator, the query returns the
names of all persons that earn over $21,000 but are not a manager and have
been there for 8 or more years.

46 SQL Getting Started

SELECT ID, NAME FROM STAFF WHERE SALARY > 21000
EXCEPT
SELECT ID, NAME FROM STAFF WHERE JOB='Mgr' AND YEARS < 8

The results of the individual queries are listed in the section on UNION. The
above statement produces the following result:

ID NAME
------ ---------

260 Jones

INTERSECT operator
The INTERSECT operator derives a result table by including only rows that
exist in both TABLE1 and TABLE2 and eliminating all duplicate rows. When
you use ALL with INTERSECT (INTERSECT ALL), the duplicate rows are not
eliminated.

In the following example of the INTERSECT operator, the query returns the
name and ID of employees that earn more than $21,000, have managerial
responsibilities and have been working for fewer than 8 years.

SELECT ID, NAME FROM STAFF WHERE SALARY > 21000
INTERSECT
SELECT ID, NAME FROM STAFF WHERE JOB='Mgr' AND YEARS < 8

The result of the individual queries is listed in the section on UNION. The
outcome of the two queries with INTERSECT is:

ID NAME
------ ---------

140 Fraye
160 Molinare

When using the UNION, EXCEPT, and INTERSECT operators, keep the
following in mind:
v All corresponding items in the select-lists of the queries for the operators

must be compatible. See the data type compatibility table in the SQL
Reference for more information.

v An ORDER BY clause, if used, must be placed after the last query with a
set operator. The column name can only be used in the ORDER BY clause if
the column name is identical to the corresponding items in the select list of
the queries for every operator.

v Operations between columns that have the same data type and the same
length produce a column with that type and length. See rules for result data
types in the SQL Reference for the results of the UNION, EXCEPT, and
INTERSECT set operators.

Chapter 6. Using Operators and Predicates in Queries 47

Predicates

Predicates let you construct conditions so that only those rows that meet these
conditions are processed. Basic predicates are discussed in “Selecting Rows”
on page 20. IN, BETWEEN, LIKE, EXISTS and quantified predicates are
discussed in this section.

Using the IN Predicate
Use the IN predicate to compare a value with several other values. For
example:

SELECT NAME
FROM STAFF
WHERE DEPT IN (20, 15)

This example is equivalent to:
SELECT NAME

FROM STAFF
WHERE DEPT = 20 OR DEPT = 15

You can use the IN and NOT IN operators when a subquery returns a set of
values. For example, the following query lists the surnames of employees
responsible for projects MA2100 and OP2012:

SELECT LASTNAME
FROM EMPLOYEE
WHERE EMPNO IN

(SELECT RESPEMP
FROM PROJECT
WHERE PROJNO = 'MA2100'
OR PROJNO = 'OP2012')

The subquery is evaluated once, and the resulting list is substituted directly
into the outer-level query. For example, if the subquery above selects
employee numbers 10 and 330, the outer-level query is evaluated as if its
WHERE clause were:

WHERE EMPNO IN (10, 330)

The list of values returned by the subquery can contain zero, one, or more
values.

Using the BETWEEN Predicate
The BETWEEN predicate compares a single value to an inclusive range of
values (named in the BETWEEN predicate).

The following example finds the names of employees who earn between
$10, 000 and $20, 000:

SELECT LASTNAME
FROM EMPLOYEE
WHERE SALARY BETWEEN 10000 AND 20000

48 SQL Getting Started

This is equivalent to:
SELECT LASTNAME

FROM EMPLOYEE
WHERE SALARY >= 10000 AND SALARY <= 20000

The next example finds the names of employees who earn less than $10, 000
or more than $20, 000:

SELECT LASTNAME
FROM EMPLOYEE
WHERE SALARY NOT BETWEEN 10000 AND 20000

Using the LIKE Predicate
Use the LIKE predicate to search for strings that have certain patterns. The
pattern is specified through percentage signs and underscores.
v The underscore character (_) represents any single character.
v The percent sign (%) represents a string of zero or more characters.
v Any other character represents itself.

The following example selects employee names that are seven letters long and
start with the letter ’S’:

SELECT NAME
FROM STAFF
WHERE NAME LIKE 'S _ _ _ _ _ _'

The next example selects names of employees that do not start with the letter
’S’:

SELECT NAME
FROM STAFF
WHERE NAME NOT LIKE 'S%'

Using the EXISTS Predicate
You can use a subquery to test for the existence of a row that satisfies some
condition. In this case, the subquery is linked to the outer-level query by the
predicate EXISTS or NOT EXISTS.

When you link a subquery to an outer query by an EXISTS predicate, the
subquery does not return a value. Rather, the EXISTS predicate is true if the
answer set of the subquery contains one or more rows, and false if it contains
no rows.

The EXISTS predicate is often used with correlated subqueries. The example
below lists the departments that currently have no entries in the PROJECT
table:

SELECT DEPTNO, DEPTNAME
FROM DEPARTMENT X
WHERE NOT EXISTS

Chapter 6. Using Operators and Predicates in Queries 49

(SELECT *
FROM PROJECT
WHERE DEPTNO = X.DEPTNO)

ORDER BY DEPTNO

You may connect the EXISTS and NOT EXISTS predicates to other predicates
by using AND and OR in the WHERE clause of the outer-level query.

Quantified Predicates
A quantified predicate compares a value with a collection of values. If a
fullselect returns more than one value, you must modify the comparison
operators in your predicate by attaching the suffix ALL, ANY, or SOME. These
suffixes determine how the set of values returned is to be treated in the
outer-level predicate. The > comparison operator is used as an example (the
remarks below apply to the other operators as well):

expression > ALL (fullselect)
The predicate is true if the expression is greater than each individual
value returned by the fullselect. If the fullselect returns no values, the
predicate is true. The result is false if the specified relationship is false for
at least one value. Note that the <>ALL quantified predicate is equivalent
to the NOT IN predicate.

The following example uses a subquery and a > ALL comparison to find
the name and profession of all employees who earn more than all
managers:

SELECT LASTNAME, JOB
FROM EMPLOYEE
WHERE SALARY > ALL
(SELECT SALARY

FROM EMPLOYEE
WHERE JOB='MANAGER')

expression > ANY (fullselect)
The predicate is true if the expression is greater than at least one of the
values returned by the fullselect. If the fullselect returns no values, the
predicate is false. Note that the =ANY quantified operator is equivalent to
the IN predicate.

expression > SOME (fullselect)
SOME is synonymous with ANY.

For more information on predicates and operators, refer to the SQL Reference.

50 SQL Getting Started

Chapter 7. Advanced SQL

This chapter covers several features of DB2 Universal Database that allow you
to design queries more effectively, while customizing them to your needs.
Topics in this chapter are based upon your thorough understanding of the
material up to this point.

This chapter covers:
v Enforcing Business Rules with Constraints and Triggers
v Joins
v ROLLUP and CUBE Queries and Recursive Queries
v OLAP Functions

Enforcing Business Rules with Constraints and Triggers

In the business world, there is a need to make sure certain rules are always
enforced. For example, an employee working on a project has to be on the
payroll list. Or, perhaps we want certain events to happen automatically. For
example, if a salesperson makes a sale, their commission should be increased.

DB2 Universal Database offers a useful suite of methods to this end:
v Unique constraints forbid duplicate values in one or more columns of a

table.
v Referential integrity constraints ensure the data remains consistent across the

specified tables.
v Table check constraints are rules that place restrictions on the values a column

is allowed to have. Inserts and updates fail if a value being assigned to a
column does not satisfy the check constraint(s) for that column.

v Triggers define a set of actions that are executed, or triggered, by a delete,
insert, or update operation on a specified table. Triggers can be used for
writing to other tables, for modifying input values, and for issuing alert
messages.

The first section provides a conceptual overview of keys. Later, referential
integrity, constraints, and triggers are explored through examples and
diagrams.

Keys
A key is a set of columns that you can use to identify or access a particular
row or rows.

© Copyright IBM Corp. 1993, 2000 51

A key composed of more than one column is called a composite key. In a table
with a composite key, the ordering of the columns within the composite key
does not necessarily correspond to their ordering within the table.

Unique Keys
A unique key is defined as a column (or set of columns) where no two values
are the same. The columns of a unique key cannot contain null values. The
constraint is enforced by the database manager during the execution of
INSERT and UPDATE statements. A table can have multiple unique keys.
Unique keys are optional and can be defined in CREATE TABLE or ALTER
TABLE statements.

Primary Keys
A primary key is a unique key that is a part of the definition of the table. A
table cannot have more than one primary key, and the columns of a primary
key cannot contain null values. Primary keys are optional and can be defined
in CREATE TABLE or ALTER TABLE statements.

Foreign Keys
A foreign key is specified in the definition of a referential constraint. A table
can have zero or more foreign keys. The value of the composite foreign key is
null if any component of the value is null. Foreign keys are optional and can
be defined in CREATE TABLE statements or ALTER TABLE statements.

Unique Constraints
A unique constraint ensures that values of a key are unique within a table.
Unique constraints are optional, and you can define them using the CREATE
TABLE or ALTER TABLE statements by specifying the PRIMARY KEY or
UNIQUE clause. For example, you can define a unique constraint on the
employee number column of a table to ensure that every employee has a
unique number.

Referential Integrity Constraints
By defining unique constraints and foreign keys you can define relationships
between tables and consequently enforce certain business rules. The
combination of unique key and foreign key constraints is commonly referred
to as referential integrity constraints. A unique constraint referenced by a
foreign key is called a parent key. A foreign key refers to or is related to a
specific parent key. For example, a rule might state that every employee
(EMPLOYEE table) must belong to an existing department (DEPARTMENT
table). So, we define department number in the EMPLOYEE table as foreign
key, and department number in the DEPARTMENT table as the primary key.
The following diagram provides a visual description of referential integrity
constraints.

52 SQL Getting Started

Table Check Constraints
Table check constraints specify conditions that are evaluated for each row of a
table. You can specify check constraints on individual columns. You can add
them by using the CREATE or ALTER TABLE statements.

The following statement creates a table with the following constraints:
v The values of the department number must lie in the range 10 to 100
v The job of an employee can only be one of the following: “Sales”, “Mgr”, or

“Clerk”
v Every employee who was hired prior to 1986 must make more than

$40, 500.

CREATE TABLE EMP
(ID SMALLINT NOT NULL,

Dept.
No.

Dept.
No.

Employee Name

Department Name

John Doe

Jane Doe

Program Development

Invalid Record

Sales

Barb Smith

Training

Fred Vickers

Communications

015

Department Table

Employee Table

Foreign Key

Primary Key

001

001

002

002

003

003 027

Figure 4. Foreign and Primary Constraints Define Relationships and Protect Data

Chapter 7. Advanced SQL 53

NAME VARCHAR(9),
DEPT SMALLINT CHECK (DEPT BETWEEN 10 AND 100),
JOB CHAR(5) CHECK (JOB IN ('Sales', 'Mgr', 'Clerk')),
HIREDATE DATE,
SALARY DECIMAL(7,2),
COMM DECIMAL(7,2),
PRIMARY KEY (ID),
CONSTRAINT YEARSAL CHECK

(YEAR(HIREDATE) >= 1986 OR SALARY > 40500))

A constraint is violated only if the condition evaluates to false. For example, if
DEPT is NULL for an inserted row, the insert proceeds without error, even
though values for DEPT should be between 10 and 100 as defined in the
constraint.

The following statement adds a constraint to the EMPLOYEE table named
COMP that an employee’s total compensation must exceed $15, 000:

ALTER TABLE EMP
ADD CONSTRAINT COMP CHECK (SALARY + COMM > 15000)

The existing rows in the table will be checked to ensure that they do not
violate the new constraint. You can defer this checking by using the SET
CONSTRAINTS statement as follows:

SET CONSTRAINTS FOR EMP OFF
ALTER TABLE EMP ADD CONSTRAINT COMP CHECK (SALARY + COMM > 15000)
SET CONSTRAINTS FOR EMP IMMEDIATE CHECKED

First, the SET CONSTRAINTS statement is used to defer constraint checking
for the table. Then one or more constraints can be added to the table without
checking the constraints. Then the SET CONSTRAINTS statement is issued
again to turn constraint checking back on and to perform any deferred
constraint checking.

Triggers
A trigger defines a set of actions. Triggers are activated by operations that
modify the data in a specified base table.

Some uses of triggers:
v to perform validation of input data
v to automatically generate a value for a newly inserted row
v to read from other tables for cross-referencing purposes
v to write to other tables for audit-trail purposes
v to support alerts through electronic mail messages

Using triggers results in faster application development, global enforcement of
business rules, and easier maintenance of applications and data.

54 SQL Getting Started

DB2 Universal Database supports several types of triggers. Triggers can be
defined to be activated either before or after a DELETE, INSERT, or UPDATE
operation. Each trigger includes a set of SQL statements called a triggered
action that can include an optional search condition.

After triggers can be further defined to perform the triggered action either for
each row or once for the statement. Before triggers always perform the
triggered action for each row.

Use a trigger before an INSERT, UPDATE, or DELETE statement to check for
certain conditions before performing a triggering operation or to change the
input values before they are stored in the table.

Use an after trigger to propagate values as necessary or perform other tasks,
such as sending a message, that may be required as a part of the trigger
operation.

The following example illustrates one use of before and after triggers.
Consider an application that records and tracks changes to stock prices. The
database contains two tables, CURRENTQUOTE and QUOTEHISTORY
defined as:

CREATE TABLE CURRENTQUOTE
(SYMBOL VARCHAR(10),
QUOTE DECIMAL(5,2),
STATUS VARCHAR(9))

CREATE TABLE QUOTEHISTORY
(SYMBOL VARCHAR(10),
QUOTE DECIMAL(5,2),
TIMESTAMP TIMESTAMP)

When the QUOTE column of CURRENTQUOTE is updated using a statement
such as:

UPDATE CURRENTQUOTE
SET QUOTE = 68.5
WHERE SYMBOL = 'IBM'

The STATUS column of CURRENTQUOTE should be updated to reflect
whether the stock is:
v Rising in value
v At a new high for the year
v Dropping in value
v At a new low for the year
v Steady in value.

This is done using the following before trigger:

Chapter 7. Advanced SQL 55

�1�

CREATE TRIGGER STOCK_STATUS
NO CASCADE BEFORE UPDATE OF QUOTE ON CURRENTQUOTE
REFERENCING NEW AS NEWQUOTE OLD AS OLDQUOTE
FOR EACH ROW MODE DB2SQL

�2�

SET NEWQUOTE.STATUS =

�3�

CASE

�4�

WHEN NEWQUOTE.QUOTE >=
(SELECT MAX(QUOTE)

FROM QUOTEHISTORY
WHERE SYMBOL = NEWQUOTE.SYMBOL

AND YEAR(TIMESTAMP) = YEAR(CURRENT DATE))
THEN 'High'

�5�

WHEN NEWQUOTE.QUOTE <=
(SELECT MIN(QUOTE)

FROM QUOTEHISTORY
WHERE SYMBOL = NEWQUOTE.SYMBOL
AND YEAR(TIMESTAMP) = YEAR(CURRENT DATE))

THEN 'Low'

�6�

WHEN NEWQUOTE.QUOTE > OLDQUOTE.QUOTE
THEN 'Rising'

WHEN NEWQUOTE.QUOTE < OLDQUOTE.QUOTE
THEN 'Dropping'

WHEN NEWQUOTE.QUOTE = OLDQUOTE.QUOTE
THEN 'Steady'

END

�1� This block of code defines STOCK_STATUS as a trigger that should be
activated before the update of the QUOTE column of the
CURRENTQUOTE table. The second line specifies that the triggered
action is to be applied before any changes caused by the actual update
of the CURRENTQUOTE table are applied to the database. The NO
CASCADE clause means that the triggered action will not cause any
other triggers to be activated. The third line specifies the names that
must be used as qualifiers of the column name for the new values
(NEWQUOTE) and the old values (OLDQUOTE). Column names
qualified with these correlation names (NEWQUOTE and
OLDQUOTE) are called transition variables. The fourth line indicates
that the triggered action should be executed for each row.

56 SQL Getting Started

�2� This marks the start of the first and only SQL statement in the
triggered action of this trigger. The SET transition-variable statement
is used in a trigger to assign a value to a column in the row of the
table that is being updated by the statement that activated the trigger.
This statement is assigning a value to the STATUS column of the
CURRENTQUOTE table.

�3� The expression that is used on the right hand side of the assignment
is a CASE expression. The CASE expression extends to the END
keyword.

�4� The first case checks to see if the new quote (NEWQUOTE.QUOTE)
exceeds the maximum value for the stock symbol in the current
calendar year. The subquery is using the QUOTEHISTORY table that
is updated by the after trigger that follows.

�5� The second case checks to see if the new quote
(NEWQUOTE.QUOTE) is less than the minimum value for the stock
symbol in the current calendar year. The subquery is using the
QUOTEHISTORY table that is updated by the after trigger that
follows.

�6� The last three cases compare the new quote (NEWQUOTE.QUOTE) to
the quote that was in the table (OLDQUOTE.QUOTE) to determine if
it is greater, less or the same. The SET transition-variable statement
ends here.

In addition to updating the entry in the CURRENTQUOTE table, an audit
record needs to be created by copying the new quote, with a timestamp, to
the QUOTEHISTORY table. This is done using the following after trigger:

�1�

CREATE TRIGGER RECORD_HISTORY
AFTER UPDATE OF QUOTE ON CURRENTQUOTE
REFERENCING NEW AS NEWQUOTE
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

�2�

INSERT INTO QUOTEHISTORY
VALUES (NEWQUOTE.SYMBOL, NEWQUOTE.QUOTE, CURRENT TIMESTAMP);

END

�1� This block of code defines a trigger named RECORD_HISTORY as a
trigger that should be activated after the update of the QUOTE
column of the CURRENTQUOTE table. The third line specifies the
name that should be used as a qualifier of the column name for the
new value (NEWQUOTE). The fourth line indicates that the triggered
action should be executed for each row.

Chapter 7. Advanced SQL 57

�2� The triggered action of this trigger includes a single SQL statement
that inserts a row into the QUOTEHISTORY table using the data from
the row that has been updated (NEWQUOTE.SYMBOL and
NEWQUOTE.QUOTE) and the current timestamp.

CURRENT TIMESTAMP is a special register containing the
timestamp. A list and explanation is provided in “Special Registers”
on page 68.

Joins

The process of combining data from two or more tables is called joining
tables. The database manager forms all combinations of rows from the
specified tables. For each combination, it tests the join condition. A join
condition is a search condition, with some restrictions. For a list of restrictions
refer to the SQL Reference.

Note that the data types of the columns involved in the join condition do not
have to be identical; however, they must be compatible. The join condition is
evaluated the same way as any other search condition, and the same rules for
comparisons apply.

If you do not specify a join condition, all combinations of rows from tables
listed in the FROM clause are returned, even though the rows may be
completely unrelated. The result is referred to as the cross product of the two
tables.

Examples in this section are based on the next two tables. They are
simplifications of the tables from the sample database but do not exist in the
sample database. They are used to outline interesting points about joins in
general. SAMP_STAFF lists the name of employees who are not employed as
contractors and their job descriptions, while SAMP_PROJECT lists the name
of employees (contract and full-time) and the projects that they are working
on.

The tables are as follows:

58 SQL Getting Started

The following example produces the cross product of the two tables. A join
condition is not specified, so every combination of rows is present:

SELECT SAMP_PROJECT.NAME,
SAMP_PROJECT.PROJ, SAMP_STAFF.NAME, SAMP_STAFF.JOB

FROM SAMP_PROJECT, SAMP_STAFF

This statement produces the following result:
NAME PROJ NAME JOB
---------- ------ ---------- --------
Haas AD3100 Haas PRES
Thompson PL2100 Haas PRES
Walker MA2112 Haas PRES
Lutz MA2111 Haas PRES
Haas AD3100 Thompson MANAGER
Thompson PL2100 Thompson MANAGER
Walker MA2112 Thompson MANAGER
Lutz MA2111 Thompson MANAGER
Haas AD3100 Lucchessi SALESREP
Thompson PL2100 Lucchessi SALESREP
Walker MA2112 Lucchessi SALESREP
Lutz MA2111 Lucchessi SALESREP
Haas AD3100 Nicholls ANALYST
Thompson PL2100 Nicholls ANALYST
Walker MA2112 Nicholls ANALYST
Lutz MA2111 Nicholls ANALYST

Figure 5. SAMP_PROJECT TABLE

Figure 6. SAMP_STAFF TABLE

Chapter 7. Advanced SQL 59

The two main types of joins are inner joins and outer joins. So far, in all of our
examples we have used the inner join. Inner joins keep only the rows from
the cross product that meet the join condition. If a row exists in one table, but
not the other, the information is not included in the result table.

The following example produces the inner join of the two tables. The inner
join lists the full-time employees who are assigned to a project :

SELECT SAMP_PROJECT.NAME,
SAMP_PROJECT.PROJ, SAMP_STAFF.NAME, SAMP_STAFF.JOB

FROM SAMP_PROJECT, SAMP_STAFF
WHERE SAMP_STAFF.NAME = SAMP_PROJECT.NAME

Alternately, you can specify the inner join as follows:
SELECT SAMP_PROJECT.NAME,

SAMP_PROJECT.PROJ, SAMP_STAFF.NAME, SAMP_STAFF.JOB
FROM SAMP_PROJECT INNER JOIN SAMP_STAFF

ON SAMP_STAFF.NAME = SAMP_PROJECT.NAME

The result is:
NAME PROJ NAME JOB
---------- ------ ---------- --------
Haas AD3100 Haas PRES
Thompson PL2100 Thompson MANAGER

Note that the result of the inner join consists of rows that have matching
values for the NAME column in the right and the left tables - both ’Haas’ and
’Thompson’ are included in the SAMP_STAFF table that lists all full-time
employees and in the SAMP_PROJECT table that lists full-time and contract
employees assigned to a project.

Outer joins are a concatenation of the inner join and rows from the left table,
right table, or both tables that are missing from the inner join. When you
perform an outer join on two tables, you arbitrarily assign one table as the left
table and the other one as the right table. There are three types of outer joins:
1. left outer join includes the inner join and the rows from the left table that

are not included in the inner join.
2. right outer join includes the inner join and the rows from the right table

that are not included in the inner join.
3. full outer join includes the inner join and the rows from both the left and

right tables that are not included in the inner join.

Use the SELECT statement to specify the columns to be displayed. In the
FROM clause, list the name of the first table followed by the keywords LEFT
OUTER JOIN, RIGHT OUTER JOIN or FULL OUTER JOIN. Next you need to

60 SQL Getting Started

specify the second table followed by the ON keyword. Following the ON
keyword, specify the join condition to express a relationship between the
tables to be joined.

In the following example, SAMP_STAFF is designated as the right table and
SAMP_PROJECT as the left table. By using LEFT OUTER JOIN, we list the
name and project number of all employees, full-time and contract, (listed in
SAMP_PROJECT) and their job title, if they are a full-time employee (listed in
SAMP_STAFF):

SELECT SAMP_PROJECT.NAME, SAMP_PROJECT.PROJ,
SAMP_STAFF.NAME, SAMP_STAFF.JOB

FROM SAMP_PROJECT LEFT OUTER JOIN SAMP_STAFF
ON SAMP_STAFF.NAME = SAMP_PROJECT.NAME

This statement produces the following result:
NAME PROJ NAME JOB
---------- -------------------- ---------- --------------------
Haas AD3100 Haas PRES
Lutz MA2111 - -
Thompson PL2100 Thompson MANAGER
Walker MA2112 - -

Rows with values in all columns are the result of the inner join. These are
rows that satisfy the join condition: ’Haas’ and ’Thompson’ are listed in both
SAMP_PROJECT (left table) and SAMP_STAFF (right table). For rows that the
join condition was not satisfied, the null value appears on columns of the
right table: ’Lutz’ and ’Walker’ are contract employees listed in the
SAMP_PROJECT table and not in the SAMP_STAFF table. Note that all rows
from the left table are included in the result set.

In the next example, SAMP_STAFF is designated as the right table and
SAMP_PROJECT as the left table. By using RIGHT OUTER JOIN we list the
name and job title of all full-time employees (listed in SAMP_STAFF) and
their project number, if they are assigned to one (listed in SAMP_PROJECT):

SELECT SAMP_PROJECT.NAME,
SAMP_PROJECT.PROJ, SAMP_STAFF.NAME, SAMP_STAFF.JOB

FROM SAMP_PROJECT RIGHT OUTER JOIN SAMP_STAFF
ON SAMP_STAFF.NAME = SAMP_PROJECT.NAME

The result is:
NAME PROJ NAME JOB
---------- -------------------- ---------- --------------------
Haas AD3100 Haas PRES
- - Lucchessi SALESREP
- - Nicholls ANALYST
Thompson PL2100 Thompson MANAGER

Chapter 7. Advanced SQL 61

As in the left outer join, rows with values in all columns are the result of the
inner join. These are rows that satisfy the join condition: ’Haas’ and
’Thompson’ are listed in both SAMP_PROJECT (left table) and SAMP_STAFF
(right table). For rows that the join condition was not satisfied, the null value
appears on columns of the right table: ’Lucchessi’ and ’Nicholls’ are full-time
employees that are not assigned to a project. While they are listed in
SAMP_STAFF, they are not in SAMP_PROJECT. Note that all rows from the
right table are included in the result set.

The next example uses FULL OUTER JOIN with the SAMP_PROJECT and
SAMP_STAFF tables. It lists the name of all full-time employees, including the
ones that are not assigned to a project, and contract employees:

SELECT SAMP_PROJECT.NAME, SAMP_PROJECT.PROJ,
SAMP_STAFF.NAME, SAMP_STAFF.JOB

FROM SAMP_PROJECT FULL OUTER JOIN SAMP_STAFF
ON SAMP_STAFF.NAME = SAMP_PROJECT.NAME

The result is:
NAME PROJ NAME JOB
---------- -------------------- ---------- --------------------
Haas AD3100 Haas PRES
- - Lucchessi SALESREP
- - Nicholls ANALYST
Thompson PL2100 Thompson MANAGER
Lutz MA2111 - -
Walker MA2112 - -

This result includes the left outer join, the right outer join and the inner join.
All full-time and contract employees are listed. Just like left outer join and
right outer join, for values where the join condition was not satisfied, the null
value appears in the respective column. Every row from SAMP_STAFF and
SAMP_PROJECT is included in the result set.

Complex Queries

DB2 Universal Database allows you to group, consolidate, and view multiple
columns in a single result set through the use of ROLLUP and CUBE. This
new and powerful capability enhances and simplifies SQL based data
analysis.

There are various methods of extracting useful information from the database.
You can implement recursive queries to produce result tables from existing
data sets.

ROLLUP and CUBE Queries
You specify ROLLUP and CUBE operations in the GROUP BY clause of a
query.

62 SQL Getting Started

ROLLUP grouping produces a result set containing the regular grouped rows
and sub-total rows. CUBE grouping produces a result set containing the rows
from ROLLUP and cross-tabulation rows.

So for ROLLUP, you could get the sales by person by month with monthly
sales totals and an overall total. For CUBE, additional rows would be
included for total sales by person.

See the SQL Reference for further details.

Recursive Queries
A recursive query is a query that iteratively uses result data to determine
further results. You might think of this as traversing a tree or a graph.

Practical examples include reservation systems, network planning and
scheduling.

A recursive query is written using a common table expression that includes a
reference to its own name.

See the SQL Reference for examples of recursive queries.

OLAP Functions

OnLine Analytical Processing (OLAP) functions perform a column function
operation over a window of data. This window may specify a partitioning of
rows, an ordering of rows within partitions, or an aggregation group. The
aggregation group allows the user to specify which rows, relative to the
current row, participate in the calculation. The use of such a window allows
operations like cumulative sums and moving averages.

In addition to allowing the user to specify a window for existing column
functions (such as SUM and AVG), OLAP functions can perform ranking
(RANK and DENSE_RANK) operations, and provide row numbering
(ROW_NUMBER), given a specific partitioning and ordering of rows.

The following example query gives an employee’s rank within the
department, based on salary, and shows the cumulative sum of the salaries
within the department (for departments 15 and 38):

SELECT NAME, DEPT,
RANK () OVER (PARTITION BY DEPT ORDER BY SALARY DESC) AS RANK,
SUM (SALARY) OVER (PARTITION BY DEPT

ORDER BY SALARY DESC
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)

Chapter 7. Advanced SQL 63

AS CUMULATIVE_SUM
FROM STAFF
WHERE DEPT IN (15,38)
ORDER BY DEPT, RANK

This statement produces the following result:
NAME DEPT RANK CUMULATIVE_SUM
---------- --------- ---------- --------------------
Hanes 15 1 20659.80
Rothman 15 2 37162.63
Ngan 15 3 49670.83
Kermisch 15 4 61929.33
O'Brien 38 1 18006.00
Marenghi 38 2 35512.75
Quigley 38 3 52321.05
Naughton 38 4 65275.80
Abrahams 38 5 77285.55

64 SQL Getting Started

Chapter 8. Customizing and Enhancing Data Manipulation

This chapter gives a brief introduction to object-oriented extensions in DB2
Universal Database. There are many advantages to using object oriented
extensions. User-defined Types (UDT) increase the set of data types available to
your applications, while User-defined Functions (UDF) allow for creation of
application specific functions. UDFs act as methods for UDTs by providing
consistent behavior and encapsulation of the types.

Special registers and system catalogs are discussed next. Special registers are
storage areas defined by the database manager; they are used to store
information that SQL statements can reference. Special registers are
established at connection time and are specific to the processing of that
application. The system catalogs contain information about the logical and the
physical structure of database objects.

This chapter covers:
v User-Defined Types
v User-Defined Functions
v Large Objects (LOBs)
v Special Registers
v Introduction to Catalog Views

A detailed discussion of the above topics is beyond the scope of this book but
is presented in the SQL Reference and the Administration Guide.

User-Defined Types

A distinct type is a user-defined data type that shares its internal representation
with an existing type (its “source” type), but is considered to be separate and
incompatible for most operations. For example, you might want to define an
age type, a weight type, and a height type, all of which have quite different
semantics, but which use the built-in data type INTEGER for their internal
representations.

The following example illustrates the creation of a distinct type named PAY:
CREATE DISTINCT TYPE PAY AS DECIMAL(9,2) WITH COMPARISONS

Although PAY has the same representation as the built-in data type
DECIMAL(9,2), it is considered to be a separate type that is not comparable to
DECIMAL(9,2) or to any other type. It is comparable only to the same distinct

© Copyright IBM Corp. 1993, 2000 65

type. Also, operators and functions that would work on DECIMAL will not
apply here. For example, a value with PAY data type cannot be multiplied
with a value of INTEGER data type. Therefore, you have to write functions
that only apply to the PAY data type.

Using distinct data types limits accidental mistakes. For instance, if the
SALARY column of table EMPLOYEE was defined as a PAY data type, it
could not be added to COMM even though their sourced types are the same.

Distinct data types support casting. A source type can be cast to a distinct
data type, and a distinct data type to a source type. For example, if the
SALARY column of the table EMPLOYEE were defined as a PAY data type,
the following example would not fail at the comparison operator.

SELECT * FROM EMPLOYEE
WHERE DECIMAL(SALARY) = 41250

DECIMAL(SALARY) returns a decimal data type. Inversely, a numeric data
type can be cast to a PAY type. For example, you can cast the number 41250
by using PAY(41250).

User-Defined Functions

As mentioned in “Using Functions” on page 28, DB2 Universal Database
provides built-in and user-defined functions (UDF). However, this set of
functions will never satisfy all requirements. Often, you need to create
customized functions for particular tasks. User-defined functions allow you to
create customized functions.

There are four types of user-defined functions: sourced (or template), external
scalar, external table, and OLE DB external table.

This section covers sourced and external scalar types. For more information
regarding external table and OLE DB table types, see the SQL Reference.

Sourced user-defined functions allow for user-defined types to selectively
reference another built-in or user-defined function that is already known to
the database. You can use both scalar and column functions.

In the next example, a user-defined function (called MAX) is created that is
based on the built-in MAX column function, which takes a DECIMAL data
type as input. The MAX UDF takes a PAY type as input and returns a PAY
type as output.

CREATE FUNCTION MAX(PAY) RETURNS PAY
SOURCE MAX(DECIMAL)

66 SQL Getting Started

External user-defined functions are written by users in a programming
language. There are external scalar functions and external table functions and
both are discussed in the SQL Reference.

As another example, assuming that you have already written a function that
counts the number of words in a string, you can register it with the database
using the CREATE FUNCTION statement with the name WORDCOUNT. This
function can then be used in SQL statements.

The following statement returns employee numbers and the number of words
in the ASCII form of their resumes. WORDCOUNT is an external scalar
function that has been registered with the database by the user and is now
being used in the statement.

SELECT EMPNO, WORDCOUNT(RESUME)
FROM EMP_RESUME
WHERE RESUME_FORMAT = 'ascii'

For more detailed information on writing user-defined functions, refer to the
Application Development Guide.

Large Objects (LOBs)

The term large object and its acronym LOB are used to refer to three data
types: BLOB, CLOB, or DBCLOB. These types can contain large amounts of
data, for objects such as audio, photos and documents.

A Binary Large OBject (BLOB) is a varying-length string, measured in bytes,
that can be up to 2 gigabytes long. A BLOB is primarily intended to hold
nontraditional data such as pictures, voice, and mixed media.

A Character Large OBject (CLOB) is a varying-length string, measured in bytes,
that can be up to 2 gigabytes long. A CLOB is used to store large single-byte
character set data such as documents. A CLOB is considered to be a character
string.

A Double-Byte Character Large OBject (DBCLOB) is a varying-length string of
double-byte characters that can be up to 2 gigabytes long (1 073 741 823
double-byte characters). A DBCLOB is used to store large double-byte
character set data such as documents. A DBCLOB is considered to be a
graphic string.

Manipulating Large Objects (LOBs)
Since LOB values can be very large, transferring them from the database
server to client application program can be time consuming. However,
typically LOB values are processed one piece at a time, rather than as a

Chapter 8. Customizing and Enhancing Data Manipulation 67

whole. For those cases where an application does not need (or want) the
entire LOB value to be stored in application memory, it can reference this
value via a large object locator variable.

Subsequent statements can then use the locators to perform operations on the
data without necessarily retrieving the entire large object. Locator variables
are used to reduce the storage requirements for the applications, and improve
the performance by reducing the flow of data between the client and the
server.

Another mechanism is file reference variables. They are used to retrieve a large
object directly to a file or to update a large object in a table directly from a
file. File reference variables are used to reduce the storage requirements for
the applications since they do not need to store the large object data. For more
information refer to the Application Development Guide and the SQL Reference.

Special Registers

A special register is a storage area that is defined for a connection by the
database manager and is used to store information that can be referenced in
SQL statements. Following are a few examples of the more commonly used
special registers. For a list of all the special registers and more detailed
information refer to the SQL Reference.
v CURRENT DATE: Holds the date according to the time-of-day clock at SQL

statement execution time.
v CURRENT FUNCTION PATH: Holds a value that specifies the function

path used to resolve function and data type references.
v CURRENT SERVER: Specifies the current application server.
v CURRENT TIME: Holds the time according to the time-of-day clock at the

SQL statement execution time.
v CURRENT TIMESTAMP: Specifies a timestamp according to the

time-of-day clock at SQL statement execution time.
v CURRENT TIMEZONE: Specifies the difference between Coordinated

Universal Time and local time at the application server.
v USER: Specifies the run-time authorization ID.

You can display the contents of a special register with the VALUES statement.
For example:

VALUES (CURRENT TIMESTAMP)

You could also use:
SELECT CURRENT TIMESTAMP FROM ORG

and this will return the TIMESTAMP for every row entry in the table.

68 SQL Getting Started

Introduction to Catalog Views

DB2 creates and maintains an extensive set of system catalog tables for each
database. These tables contain information about the logical and physical
structure of database objects such as tables, views, packages, referential
integrity relationships, functions, distinct types, and triggers. They are created
when the database is created, and are updated in the course of normal
operation. You cannot explicitly create or drop them, but you can query and
view their contents.

For more information, refer to the SQL Reference.

Selecting Rows from System Catalogs
The catalog views are like any other database view. You can use SQL
statements to look at the data, exactly in the same way that you would for
any other view in the system.

You can find very useful information about tables in the SYSCAT.TABLES
catalog. To find the names of existing tables that you have created, issue a
statement similar to the following:

SELECT TABNAME, TYPE, CREATE_TIME
FROM SYSCAT.TABLES
WHERE DEFINER = USER

This statement produces the following result:
TABNAME TYPE CREATE_TIME
------------------ ---- --------------------------
ORG T 1999-07-21-13.42.55.128005
STAFF T 1999-07-21-13.42.55.609001
DEPARTMENT T 1999-07-21-13.42.56.069001
EMPLOYEE T 1999-07-21-13.42.56.310001
EMP_ACT T 1999-07-21-13.42.56.710001
PROJECT T 1999-07-21-13.42.57.051001
EMP_PHOTO T 1999-07-21-13.42.57.361001
EMP_RESUME T 1999-07-21-13.42.59.154001
SALES T 1999-07-21-13.42.59.855001
CL_SCHED T 1999-07-21-13.43.00.025002
IN_TRAY T 1999-07-21-13.43.00.055001

The following list includes catalog views pertaining to subjects discussed in
this book. There are many other catalog views, and they are listed in detail in
the SQL Reference and Administration Guide manuals.

Description Catalog View

check constraints SYSCAT.CHECKS

columns SYSCAT.COLUMNS

columns referenced by check constraints SYSCAT.COLCHECKS

Chapter 8. Customizing and Enhancing Data Manipulation 69

Description Catalog View

columns used in keys SYSCAT.KEYCOLUSE

datatypes SYSCAT.DATATYPES

function parameters or result of a function SYSCAT.FUNCPARMS

referential constraints SYSCAT.REFERENCES

schemas SYSCAT.SCHEMATA

table constraints SYSCAT.TABCONST

tables SYSCAT.TABLES

triggers SYSCAT.TRIGGERS

user-defined functions SYSCAT.FUNCTIONS

views SYSCAT.VIEWS

70 SQL Getting Started

Appendix A. Sample Database Tables

This appendix shows the information contained in the sample tables of the
sample database SAMPLE, and how to create and remove them.

Additional sample databases are provided with DB2 Universal Database to
demonstrate business intelligence functions, and are used in the business
intelligence tutorial. However, only the contents of the sample database
SAMPLE are described in this appendix. Refer to the Data Warehouse Center
Administration Guide for more information about the business intelligence
sample databases.

The sample tables are used in the examples that appear in this manual and
other manuals in this library. In addition, the data contained in the sample
files with BLOB and CLOB data types is shown.

The following sections are included in this appendix:.
“The Sample Database” on page 72
“To Create the Sample Database” on page 72
“To Erase the Sample Database” on page 72
“CL_SCHED Table” on page 72
“DEPARTMENT Table” on page 73
“EMPLOYEE Table” on page 73
“EMP_ACT Table” on page 76
“EMP_PHOTO Table” on page 78
“EMP_RESUME Table” on page 78
“IN_TRAY Table” on page 79
“ORG Table” on page 79
“PROJECT Table” on page 80
“SALES Table” on page 81
“STAFF Table” on page 82
“STAFFG Table” on page 83
“Sample Files with BLOB and CLOB Data Type” on page 84
“Quintana Photo” on page 84
“Quintana Resume” on page 84
“Nicholls Photo” on page 85
“Nicholls Resume” on page 86
“Adamson Photo” on page 87
“Adamson Resume” on page 87
“Walker Photo” on page 88
“Walker Resume” on page 89.

In the sample tables, a dash (-) indicates a null value.

© Copyright IBM Corp. 1993, 2000 71

The Sample Database

The examples in this book use a sample database. To use these examples, you
must create the SAMPLE database. To use it, the database manager must be
installed.

To Create the Sample Database
An executable file creates the sample database.2 To create a database you must
have SYSADM authority.
v When Using UNIX-based platforms

If you are using the operating system command prompt, type:
sqllib/bin/db2sampl <path>

from the home directory of the database manager instance owner, where
path is an optional parameter specifying the path where the sample
database is to be created. Press Enter.3 The schema for DB2SAMPL is the
CURRENT SCHEMA special register value.

v When using OS/2 or Windows platforms

If you are using the operating system command prompt, type:

db2sampl e

where e is an optional parameter specifying the drive where the database is
to be created. Press Enter.4

If you are not logged on to your workstation through User Profile
Management, you will be prompted to do so.

To Erase the Sample Database
If you do not need to access the sample database, you can erase it by using
the DROP DATABASE command:

db2 drop database sample

CL_SCHED Table

Name: CLASS_CODE DAY STARTING ENDING

Type: char(7) smallint time time

Desc: Class Code
(room:teacher)

Day # of 4 day
schedule

Class Start Time Class End Time

2. For information related to this command, see the DB2SAMPL command in the Command Reference.

3. If the path parameter is not specified, the sample database is created in the default path specified by the
DFTDBPATH parameter in the database manager configuration file.

4. If the drive parameter is not specified, the sample database is created on the same drive as DB2.

Sample Database Tables

72 SQL Getting Started

DEPARTMENT Table

Name: DEPTNO DEPTNAME MGRNO ADMRDEPT LOCATION

Type: char(3) not null varchar(29) not null char(6) char(3) not null char(16)

Desc: Department
number

Name describing general
activities of department

Employee
number
(EMPNO) of
department
manager

Department
(DEPTNO) to
which this
department
reports

Name of the
remote location

Values: A00 SPIFFY COMPUTER SERVICE
DIV.

000010 A00 -

B01 PLANNING 000020 A00 -

C01 INFORMATION CENTER 000030 A00 -

D01 DEVELOPMENT CENTER - A00 -

D11 MANUFACTURING SYSTEMS 000060 D01 -

D21 ADMINISTRATION SYSTEMS 000070 D01 -

E01 SUPPORT SERVICES 000050 A00 -

E11 OPERATIONS 000090 E01 -

E21 SOFTWARE SUPPORT 000100 E01 -

EMPLOYEE Table

Names: EMPNO FIRSTNME MIDINIT LASTNAME WORKDEPT PHONENO HIREDATE

Type: char(6) not
null

varchar(12)
not null

char(1) not
null

varchar(15)
not null

char(3) char(4) date

Desc: Employee
number

First name Middle
initial

Last name Department
(DEPTNO)
in which the
employee
works

Phone
number

Date of hire

JOB EDLEVEL SEX BIRTHDATE SALARY BONUS COMM

char(8) smallint not null char(1) date dec(9,2) dec(9,2) dec(9,2)

Job Number of years of
formal education

Sex (M
male, F
female)

Date of birth Yearly salary Yearly bonus Yearly
commission

See the following page for the values in the EMPLOYEE table.

Sample Database Tables

Appendix A. Sample Database Tables 73

E
M

P
N

O
FI

R
S

T
N

M
E

M
ID

IN
IT

L
A

S
T

N
A

M
E

W
O

R
K

D
E

P
T

P
H

O
N

E
N

O
H

IR
E

D
A

T
E

JO
B

E
D

L
E

V
E

L
S

E
X

B
IR

T
H

D
A

T
E

S
A

L
A

R
Y

B
O

N
U

S
C

O
M

M

ch
ar

(6
)

no
t

nu
ll

va
rc

ha
r(

12
)

no
t

nu
ll

ch
ar

(1
)

no
t

nu
ll

va
rc

ha
r(

15
)

no
t

nu
ll

ch
ar

(3
)

ch
ar

(4
)

d
at

e
ch

ar
(8

)
sm

al
lin

t
no

t
nu

ll
ch

ar
(1

)
d

at
e

d
ec

(9
,2

)
d

ec
(9

,2
)

d
ec

(9
,2

)

00
00

10
C

H
R

IS
T

IN
E

I
H

A
A

S
A

00
39

78
19

65
-0

1-
01

PR
E

S
18

F
19

33
-0

8-
24

52
75

0
10

00
42

20

00
00

20
M

IC
H

A
E

L
L

T
H

O
M

PS
O

N
B

01
34

76
19

73
-1

0-
10

M
A

N
A

G
E

R
18

M
19

48
-0

2-
02

41
25

0
80

0
33

00

00
00

30
SA

L
LY

A
K

W
A

N
C

01
47

38
19

75
-0

4-
05

M
A

N
A

G
E

R
20

F
19

41
-0

5-
11

38
25

0
80

0
30

60

00
00

50
JO

H
N

B
G

E
Y

E
R

E
01

67
89

19
49

-0
8-

17
M

A
N

A
G

E
R

16
M

19
25

-0
9-

15
40

17
5

80
0

32
14

00
00

60
IR

V
IN

G
F

ST
E

R
N

D
11

64
23

19
73

-0
9-

14
M

A
N

A
G

E
R

16
M

19
45

-0
7-

07
32

25
0

50
0

25
80

00
00

70
E

V
A

D
PU

L
A

SK
I

D
21

78
31

19
80

-0
9-

30
M

A
N

A
G

E
R

16
F

19
53

-0
5-

26
36

17
0

70
0

28
93

00
00

90
E

IL
E

E
N

W
H

E
N

D
E

R
SO

N
E

11
54

98
19

70
-0

8-
15

M
A

N
A

G
E

R
16

F
19

41
-0

5-
15

29
75

0
60

0
23

80

00
01

00
T

H
E

O
D

O
R

E
Q

SP
E

N
SE

R
E

21
09

72
19

80
-0

6-
19

M
A

N
A

G
E

R
14

M
19

56
-1

2-
18

26
15

0
50

0
20

92

00
01

10
V

IN
C

E
N

Z
O

G
L

U
C

C
H

E
SS

I
A

00
34

90
19

58
-0

5-
16

SA
L

E
SR

E
P

19
M

19
29

-1
1-

05
46

50
0

90
0

37
20

00
01

20
SE

A
N

O
’C

O
N

N
E

L
L

A
00

21
67

19
63

-1
2-

05
C

L
E

R
K

14
M

19
42

-1
0-

18
29

25
0

60
0

23
40

00
01

30
D

O
L

O
R

E
S

M
Q

U
IN

TA
N

A
C

01
45

78
19

71
-0

7-
28

A
N

A
LY

ST
16

F
19

25
-0

9-
15

23
80

0
50

0
19

04

00
01

40
H

E
A

T
H

E
R

A
N

IC
H

O
L

L
S

C
01

17
93

19
76

-1
2-

15
A

N
A

LY
ST

18
F

19
46

-0
1-

19
28

42
0

60
0

22
74

00
01

50
B

R
U

C
E

A
D

A
M

SO
N

D
11

45
10

19
72

-0
2-

12
D

E
SI

G
N

E
R

16
M

19
47

-0
5-

17
25

28
0

50
0

20
22

00
01

60
E

L
IZ

A
B

E
T

H
R

PI
A

N
K

A
D

11
37

82
19

77
-1

0-
11

D
E

SI
G

N
E

R
17

F
19

55
-0

4-
12

22
25

0
40

0
17

80

00
01

70
M

A
SA

TO
SH

I
J

Y
O

SH
IM

U
R

A
D

11
28

90
19

78
-0

9-
15

D
E

SI
G

N
E

R
16

M
19

51
-0

1-
05

24
68

0
50

0
19

74

00
01

80
M

A
R

IL
Y

N
S

SC
O

U
T

T
E

N
D

11
16

82
19

73
-0

7-
07

D
E

SI
G

N
E

R
17

F
19

49
-0

2-
21

21
34

0
50

0
17

07

00
01

90
JA

M
E

S
H

W
A

L
K

E
R

D
11

29
86

19
74

-0
7-

26
D

E
SI

G
N

E
R

16
M

19
52

-0
6-

25
20

45
0

40
0

16
36

00
02

00
D

A
V

ID
B

R
O

W
N

D
11

45
01

19
66

-0
3-

03
D

E
SI

G
N

E
R

16
M

19
41

-0
5-

29
27

74
0

60
0

22
17

00
02

10
W

IL
L

IA
M

T
JO

N
E

S
D

11
09

42
19

79
-0

4-
11

D
E

SI
G

N
E

R
17

M
19

53
-0

2-
23

18
27

0
40

0
14

62

00
02

20
JE

N
N

IF
E

R
K

L
U

T
Z

D
11

06
72

19
68

-0
8-

29
D

E
SI

G
N

E
R

18
F

19
48

-0
3-

19
29

84
0

60
0

23
87

00
02

30
JA

M
E

S
J

JE
FF

E
R

SO
N

D
21

20
94

19
66

-1
1-

21
C

L
E

R
K

14
M

19
35

-0
5-

30
22

18
0

40
0

17
74

00
02

40
SA

LV
A

TO
R

E
M

M
A

R
IN

O
D

21
37

80
19

79
-1

2-
05

C
L

E
R

K
17

M
19

54
-0

3-
31

28
76

0
60

0
23

01

00
02

50
D

A
N

IE
L

S
SM

IT
H

D
21

09
61

19
69

-1
0-

30
C

L
E

R
K

15
M

19
39

-1
1-

12
19

18
0

40
0

15
34

00
02

60
SY

B
IL

P
JO

H
N

SO
N

D
21

89
53

19
75

-0
9-

11
C

L
E

R
K

16
F

19
36

-1
0-

05
17

25
0

30
0

13
80

00
02

70
M

A
R

IA
L

PE
R

E
Z

D
21

90
01

19
80

-0
9-

30
C

L
E

R
K

15
F

19
53

-0
5-

26
27

38
0

50
0

21
90

00
02

80
E

T
H

E
L

R
SC

H
N

E
ID

E
R

E
11

89
97

19
67

-0
3-

24
O

PE
R

A
TO

R
17

F
19

36
-0

3-
28

26
25

0
50

0
21

00

00
02

90
JO

H
N

R
PA

R
K

E
R

E
11

45
02

19
80

-0
5-

30
O

PE
R

A
TO

R
12

M
19

46
-0

7-
09

15
34

0
30

0
12

27

00
03

00
PH

IL
IP

X
SM

IT
H

E
11

20
95

19
72

-0
6-

19
O

PE
R

A
TO

R
14

M
19

36
-1

0-
27

17
75

0
40

0
14

20

00
03

10
M

A
U

D
E

F
SE

T
R

IG
H

T
E

11
33

32
19

64
-0

9-
12

O
PE

R
A

TO
R

12
F

19
31

-0
4-

21
15

90
0

30
0

12
72

00
03

20
R

A
M

L
A

L
V

M
E

H
TA

E
21

99
90

19
65

-0
7-

07
FI

E
L

D
R

E
P

16
M

19
32

-0
8-

11
19

95
0

40
0

15
96

Sample Database Tables

74 SQL Getting Started

E
M

P
N

O
FI

R
S

T
N

M
E

M
ID

IN
IT

L
A

S
T

N
A

M
E

W
O

R
K

D
E

P
T

P
H

O
N

E
N

O
H

IR
E

D
A

T
E

JO
B

E
D

L
E

V
E

L
S

E
X

B
IR

T
H

D
A

T
E

S
A

L
A

R
Y

B
O

N
U

S
C

O
M

M

00
03

30
W

IN
G

L
E

E
E

21
21

03
19

76
-0

2-
23

FI
E

L
D

R
E

P
14

M
19

41
-0

7-
18

25
37

0
50

0
20

30

00
03

40
JA

SO
N

R
G

O
U

N
O

T
E

21
56

98
19

47
-0

5-
05

FI
E

L
D

R
E

P
16

M
19

26
-0

5-
17

23
84

0
50

0
19

07

Sample Database Tables

Appendix A. Sample Database Tables 75

EMP_ACT Table

Name: EMPNO PROJNO ACTNO EMPTIME EMSTDATE EMENDATE

Type: char(6) not null char(6) not null smallint not
null

dec(5,2) date date

Desc: Employee
number

Project number Activity
number

Proportion of
employee’s

time spent on
project

Date activity
starts

Date activity
ends

Values: 000010 AD3100 10 .50 1982-01-01 1982-07-01

000070 AD3110 10 1.00 1982-01-01 1983-02-01

000230 AD3111 60 1.00 1982-01-01 1982-03-15

000230 AD3111 60 .50 1982-03-15 1982-04-15

000230 AD3111 70 .50 1982-03-15 1982-10-15

000230 AD3111 80 .50 1982-04-15 1982-10-15

000230 AD3111 180 1.00 1982-10-15 1983-01-01

000240 AD3111 70 1.00 1982-02-15 1982-09-15

000240 AD3111 80 1.00 1982-09-15 1983-01-01

000250 AD3112 60 1.00 1982-01-01 1982-02-01

000250 AD3112 60 .50 1982-02-01 1982-03-15

000250 AD3112 60 .50 1982-12-01 1983-01-01

000250 AD3112 60 1.00 1983-01-01 1983-02-01

000250 AD3112 70 .50 1982-02-01 1982-03-15

000250 AD3112 70 1.00 1982-03-15 1982-08-15

000250 AD3112 70 .25 1982-08-15 1982-10-15

000250 AD3112 80 .25 1982-08-15 1982-10-15

000250 AD3112 80 .50 1982-10-15 1982-12-01

000250 AD3112 180 .50 1982-08-15 1983-01-01

000260 AD3113 70 .50 1982-06-15 1982-07-01

000260 AD3113 70 1.00 1982-07-01 1983-02-01

000260 AD3113 80 1.00 1982-01-01 1982-03-01

000260 AD3113 80 .50 1982-03-01 1982-04-15

000260 AD3113 180 .50 1982-03-01 1982-04-15

000260 AD3113 180 1.00 1982-04-15 1982-06-01

000260 AD3113 180 .50 1982-06-01 1982-07-01

000270 AD3113 60 .50 1982-03-01 1982-04-01

000270 AD3113 60 1.00 1982-04-01 1982-09-01

000270 AD3113 60 .25 1982-09-01 1982-10-15

000270 AD3113 70 .75 1982-09-01 1982-10-15

000270 AD3113 70 1.00 1982-10-15 1983-02-01

Sample Database Tables

76 SQL Getting Started

Name: EMPNO PROJNO ACTNO EMPTIME EMSTDATE EMENDATE

000270 AD3113 80 1.00 1982-01-01 1982-03-01

000270 AD3113 80 .50 1982-03-01 1982-04-01

000030 IF1000 10 .50 1982-06-01 1983-01-01

000130 IF1000 90 1.00 1982-01-01 1982-10-01

000130 IF1000 100 .50 1982-10-01 1983-01-01

000140 IF1000 90 .50 1982-10-01 1983-01-01

000030 IF2000 10 .50 1982-01-01 1983-01-01

000140 IF2000 100 1.00 1982-01-01 1982-03-01

000140 IF2000 100 .50 1982-03-01 1982-07-01

000140 IF2000 110 .50 1982-03-01 1982-07-01

000140 IF2000 110 .50 1982-10-01 1983-01-01

000010 MA2100 10 .50 1982-01-01 1982-11-01

000110 MA2100 20 1.00 1982-01-01 1982-03-01

000010 MA2110 10 1.00 1982-01-01 1983-02-01

000200 MA2111 50 1.00 1982-01-01 1982-06-15

000200 MA2111 60 1.00 1982-06-15 1983-02-01

000220 MA2111 40 1.00 1982-01-01 1983-02-01

000150 MA2112 60 1.00 1982-01-01 1982-07-15

000150 MA2112 180 1.00 1982-07-15 1983-02-01

000170 MA2112 60 1.00 1982-01-01 1983-06-01

000170 MA2112 70 1.00 1982-06-01 1983-02-01

000190 MA2112 70 1.00 1982-02-01 1982-10-01

000190 MA2112 80 1.00 1982-10-01 1983-10-01

000160 MA2113 60 1.00 1982-07-15 1983-02-01

000170 MA2113 80 1.00 1982-01-01 1983-02-01

000180 MA2113 70 1.00 1982-04-01 1982-06-15

000210 MA2113 80 .50 1982-10-01 1983-02-01

000210 MA2113 180 .50 1982-10-01 1983-02-01

000050 OP1000 10 .25 1982-01-01 1983-02-01

000090 OP1010 10 1.00 1982-01-01 1983-02-01

000280 OP1010 130 1.00 1982-01-01 1983-02-01

000290 OP1010 130 1.00 1982-01-01 1983-02-01

000300 OP1010 130 1.00 1982-01-01 1983-02-01

000310 OP1010 130 1.00 1982-01-01 1983-02-01

000050 OP2010 10 .75 1982-01-01 1983-02-01

000100 OP2010 10 1.00 1982-01-01 1983-02-01

000320 OP2011 140 .75 1982-01-01 1983-02-01

Sample Database Tables

Appendix A. Sample Database Tables 77

Name: EMPNO PROJNO ACTNO EMPTIME EMSTDATE EMENDATE

000320 OP2011 150 .25 1982-01-01 1983-02-01

000330 OP2012 140 .25 1982-01-01 1983-02-01

000330 OP2012 160 .75 1982-01-01 1983-02-01

000340 OP2013 140 .50 1982-01-01 1983-02-01

000340 OP2013 170 .50 1982-01-01 1983-02-01

000020 PL2100 30 1.00 1982-01-01 1982-09-15

EMP_PHOTO Table

Name: EMPNO PHOTO_FORMAT PICTURE

Type: char(6) not null varchar(10) not null blob(100k)

Desc: Employee number Photo format Photo of employee

Values: 000130 bitmap db200130.bmp

000130 gif db200130.gif

000130 xwd db200130.xwd

000140 bitmap db200140.bmp

000140 gif db200140.gif

000140 xwd db200140.xwd

000150 bitmap db200150.bmp

000150 gif db200150.gif

000150 xwd db200150.xwd

000190 bitmap db200190.bmp

000190 gif db200190.gif

000190 xwd db200190.xwd

v “Quintana Photo” on page 84 shows the picture of the employee, Delores
Quintana.

v “Nicholls Photo” on page 85 shows the picture of the employee, Heather
Nicholls.

v “Adamson Photo” on page 87 shows the picture of the employee, Bruce
Adamson.

v “Walker Photo” on page 88 shows the picture of the employee, James
Walker.

EMP_RESUME Table

Name: EMPNO RESUME_FORMAT RESUME

Type: char(6) not null varchar(10) not null clob(5k)

Desc: Employee number Resume Format Resume of employee

Values: 000130 ascii db200130.asc

Sample Database Tables

78 SQL Getting Started

Name: EMPNO RESUME_FORMAT RESUME

000130 script db200130.scr

000140 ascii db200140.asc

000140 script db200140.scr

000150 ascii db200150.asc

000150 script db200150.scr

000190 ascii db200190.asc

000190 script db200190.scr

v “Quintana Resume” on page 84 shows the resume of the employee, Delores
Quintana.

v “Nicholls Resume” on page 86 shows the resume of the employee, Heather
Nicholls.

v “Adamson Resume” on page 87 shows the resume of the employee, Bruce
Adamson.

v “Walker Resume” on page 89 shows the resume of the employee, James
Walker.

IN_TRAY Table

Name: RECEIVED SOURCE SUBJECT NOTE_TEXT

Type: timestamp char(8) char(64) varchar(3000)

Desc: Date and Time
received

User id of person
sending note

Brief description The note

ORG Table

Name: DEPTNUMB DEPTNAME MANAGER DIVISION LOCATION

Type: smallint not null varchar(14) smallint varchar(10) varchar(13)

Desc: Department
number

Department name Manager number Division of
corporation

City

Values: 10 Head Office 160 Corporate New York

15 New England 50 Eastern Boston

20 Mid Atlantic 10 Eastern Washington

38 South Atlantic 30 Eastern Atlanta

42 Great Lakes 100 Midwest Chicago

51 Plains 140 Midwest Dallas

66 Pacific 270 Western San Francisco

84 Mountain 290 Western Denver

Sample Database Tables

Appendix A. Sample Database Tables 79

PROJECT Table

Name: PROJNO PROJNAME DEPTNO RESPEMP PRSTAFF PRSTDATE PRENDATE MAJPROJ

Type: char(6) not
null

varchar(24)
not null

char(3) not
null

char(6) not
null

dec(5,2) date date char(6)

Desc: Project
number

Project name Department
responsible

Employee
responsible

Estimated
mean
staffing

Estimated
start date

Estimated
end date

Major
project, for a
subproject

Values: AD3100 ADMIN
SERVICES

D01 000010 6.5 1982-01-01 1983-02-01 -

AD3110 GENERAL
ADMIN
SYSTEMS

D21 000070 6 1982-01-01 1983-02-01 AD3100

AD3111 PAYROLL
PROGRAMMING

D21 000230 2 1982-01-01 1983-02-01 AD3110

AD3112 PERSONNEL
PROGRAMMING

D21 000250 1 1982-01-01 1983-02-01 AD3110

AD3113 ACCOUNT
PROGRAMMING

D21 000270 2 1982-01-01 1983-02-01 AD3110

IF1000 QUERY
SERVICES

C01 000030 2 1982-01-01 1983-02-01 -

IF2000 USER
EDUCATION

C01 000030 1 1982-01-01 1983-02-01 -

MA2100 WELD LINE
AUTOMATION

D01 000010 12 1982-01-01 1983-02-01 -

MA2110 W L
PROGRAMMING

D11 000060 9 1982-01-01 1983-02-01 MA2100

MA2111 W L
PROGRAM
DESIGN

D11 000220 2 1982-01-01 1982-12-01 MA2110

MA2112 W L ROBOT
DESIGN

D11 000150 3 1982-01-01 1982-12-01 MA2110

MA2113 W L PROD
CONT
PROGS

D11 000160 3 1982-02-15 1982-12-01 MA2110

OP1000 OPERATION
SUPPORT

E01 000050 6 1982-01-01 1983-02-01 -

OP1010 OPERATION E11 000090 5 1982-01-01 1983-02-01 OP1000

OP2000 GEN
SYSTEMS
SERVICES

E01 000050 5 1982-01-01 1983-02-01 -

OP2010 SYSTEMS
SUPPORT

E21 000100 4 1982-01-01 1983-02-01 OP2000

OP2011 SCP
SYSTEMS
SUPPORT

E21 000320 1 1982-01-01 1983-02-01 OP2010

OP2012 APPLICATIONS
SUPPORT

E21 000330 1 1982-01-01 1983-02-01 OP2010

OP2013 DB/DC
SUPPORT

E21 000340 1 1982-01-01 1983-02-01 OP2010

PL2100 WELD LINE
PLANNING

B01 000020 1 1982-01-01 1982-09-15 MA2100

Sample Database Tables

80 SQL Getting Started

SALES Table

Name: SALES_DATE SALES_PERSON REGION SALES

Type: date varchar(15) varchar(15) int

Desc: Date of sales Employee’s last name Region of sales Number of sales

Values: 12/31/1995 LUCCHESSI Ontario-South 1

12/31/1995 LEE Ontario-South 3

12/31/1995 LEE Quebec 1

12/31/1995 LEE Manitoba 2

12/31/1995 GOUNOT Quebec 1

03/29/1996 LUCCHESSI Ontario-South 3

03/29/1996 LUCCHESSI Quebec 1

03/29/1996 LEE Ontario-South 2

03/29/1996 LEE Ontario-North 2

03/29/1996 LEE Quebec 3

03/29/1996 LEE Manitoba 5

03/29/1996 GOUNOT Ontario-South 3

03/29/1996 GOUNOT Quebec 1

03/29/1996 GOUNOT Manitoba 7

03/30/1996 LUCCHESSI Ontario-South 1

03/30/1996 LUCCHESSI Quebec 2

03/30/1996 LUCCHESSI Manitoba 1

03/30/1996 LEE Ontario-South 7

03/30/1996 LEE Ontario-North 3

03/30/1996 LEE Quebec 7

03/30/1996 LEE Manitoba 4

03/30/1996 GOUNOT Ontario-South 2

03/30/1996 GOUNOT Quebec 18

03/30/1996 GOUNOT Manitoba 1

03/31/1996 LUCCHESSI Manitoba 1

03/31/1996 LEE Ontario-South 14

03/31/1996 LEE Ontario-North 3

03/31/1996 LEE Quebec 7

03/31/1996 LEE Manitoba 3

03/31/1996 GOUNOT Ontario-South 2

03/31/1996 GOUNOT Quebec 1

04/01/1996 LUCCHESSI Ontario-South 3

04/01/1996 LUCCHESSI Manitoba 1

04/01/1996 LEE Ontario-South 8

04/01/1996 LEE Ontario-North -

04/01/1996 LEE Quebec 8

04/01/1996 LEE Manitoba 9

04/01/1996 GOUNOT Ontario-South 3

Sample Database Tables

Appendix A. Sample Database Tables 81

Name: SALES_DATE SALES_PERSON REGION SALES

04/01/1996 GOUNOT Ontario-North 1

04/01/1996 GOUNOT Quebec 3

04/01/1996 GOUNOT Manitoba 7

STAFF Table

Name: ID NAME DEPT JOB YEARS SALARY COMM

Type: smallint not
null

varchar(9) smallint char(5) smallint dec(7,2) dec(7,2)

Desc: Employee
number

Employee
name

Department
number

Job type Years of
service

Current
salary

Commission

Values: 10 Sanders 20 Mgr 7 18357.50 -

20 Pernal 20 Sales 8 18171.25 612.45

30 Marenghi 38 Mgr 5 17506.75 -

40 O’Brien 38 Sales 6 18006.00 846.55

50 Hanes 15 Mgr 10 20659.80 -

60 Quigley 38 Sales - 16808.30 650.25

70 Rothman 15 Sales 7 16502.83 1152.00

80 James 20 Clerk - 13504.60 128.20

90 Koonitz 42 Sales 6 18001.75 1386.70

100 Plotz 42 Mgr 7 18352.80 -

110 Ngan 15 Clerk 5 12508.20 206.60

120 Naughton 38 Clerk - 12954.75 180.00

130 Yamaguchi 42 Clerk 6 10505.90 75.60

140 Fraye 51 Mgr 6 21150.00 -

150 Williams 51 Sales 6 19456.50 637.65

160 Molinare 10 Mgr 7 22959.20 -

170 Kermisch 15 Clerk 4 12258.50 110.10

180 Abrahams 38 Clerk 3 12009.75 236.50

190 Sneider 20 Clerk 8 14252.75 126.50

200 Scoutten 42 Clerk - 11508.60 84.20

210 Lu 10 Mgr 10 20010.00 -

220 Smith 51 Sales 7 17654.50 992.80

230 Lundquist 51 Clerk 3 13369.80 189.65

240 Daniels 10 Mgr 5 19260.25 -

250 Wheeler 51 Clerk 6 14460.00 513.30

260 Jones 10 Mgr 12 21234.00 -

270 Lea 66 Mgr 9 18555.50 -

280 Wilson 66 Sales 9 18674.50 811.50

Sample Database Tables

82 SQL Getting Started

Name: ID NAME DEPT JOB YEARS SALARY COMM

290 Quill 84 Mgr 10 19818.00 -

300 Davis 84 Sales 5 15454.50 806.10

310 Graham 66 Sales 13 21000.00 200.30

320 Gonzales 66 Sales 4 16858.20 844.00

330 Burke 66 Clerk 1 10988.00 55.50

340 Edwards 84 Sales 7 17844.00 1285.00

350 Gafney 84 Clerk 5 13030.50 188.00

STAFFG Table

Note: STAFFG is only created for double-byte code pages.

Name: ID NAME DEPT JOB YEARS SALARY COMM

Type: smallint not
null

vargraphic(9) smallint graphic(5) smallint dec(9,0) dec(9,0)

Desc: Employee
number

Employee
name

Department
number

Job type Years of
service

Current
salary

Commission

Values: 10 Sanders 20 Mgr 7 18357.50 -

20 Pernal 20 Sales 8 18171.25 612.45

30 Marenghi 38 Mgr 5 17506.75 -

40 O’Brien 38 Sales 6 18006.00 846.55

50 Hanes 15 Mgr 10 20659.80 -

60 Quigley 38 Sales - 16808.30 650.25

70 Rothman 15 Sales 7 16502.83 1152.00

80 James 20 Clerk - 13504.60 128.20

90 Koonitz 42 Sales 6 18001.75 1386.70

100 Plotz 42 Mgr 7 18352.80 -

110 Ngan 15 Clerk 5 12508.20 206.60

120 Naughton 38 Clerk - 12954.75 180.00

130 Yamaguchi 42 Clerk 6 10505.90 75.60

140 Fraye 51 Mgr 6 21150.00 -

150 Williams 51 Sales 6 19456.50 637.65

160 Molinare 10 Mgr 7 22959.20 -

170 Kermisch 15 Clerk 4 12258.50 110.10

180 Abrahams 38 Clerk 3 12009.75 236.50

190 Sneider 20 Clerk 8 14252.75 126.50

200 Scoutten 42 Clerk - 11508.60 84.20

210 Lu 10 Mgr 10 20010.00 -

220 Smith 51 Sales 7 17654.50 992.80

Sample Database Tables

Appendix A. Sample Database Tables 83

Name: ID NAME DEPT JOB YEARS SALARY COMM

230 Lundquist 51 Clerk 3 13369.80 189.65

240 Daniels 10 Mgr 5 19260.25 -

250 Wheeler 51 Clerk 6 14460.00 513.30

260 Jones 10 Mgr 12 21234.00 -

270 Lea 66 Mgr 9 18555.50 -

280 Wilson 66 Sales 9 18674.50 811.50

290 Quill 84 Mgr 10 19818.00 -

300 Davis 84 Sales 5 15454.50 806.10

310 Graham 66 Sales 13 21000.00 200.30

320 Gonzales 66 Sales 4 16858.20 844.00

330 Burke 66 Clerk 1 10988.00 55.50

340 Edwards 84 Sales 7 17844.00 1285.00

350 Gafney 84 Clerk 5 13030.50 188.00

Sample Files with BLOB and CLOB Data Type

This section shows the data found in the EMP_PHOTO files (pictures of
employees) and EMP_RESUME files (resumes of employees).

Quintana Photo

Quintana Resume
The following text is found in the db200130.asc and db200130.scr files.

Resume: Delores M. Quintana

Personal Information

Figure 7. Delores M. Quintana

Sample Database Tables

84 SQL Getting Started

Address: 1150 Eglinton Ave Mellonville, Idaho 83725
Phone: (208) 555-9933
Birthdate: September 15, 1925
Sex: Female
Marital Status: Married
Height: 5’2″
Weight: 120 lbs.

Department Information
Employee Number: 000130
Dept Number: C01
Manager: Sally Kwan
Position: Analyst
Phone: (208) 555-4578
Hire Date: 1971-07-28

Education

1965 Math and English, B.A. Adelphi University

1960 Dental Technician Florida Institute of
Technology

Work History

10/91 - present Advisory Systems Analyst Producing
documentation tools for engineering
department.

12/85 - 9/91 Technical Writer Writer, text programmer, and
planner.

1/79 - 11/85 COBOL Payroll Programmer Writing payroll
programs for a diesel fuel company.

Interests
v Cooking
v Reading
v Sewing
v Remodeling

Nicholls Photo

Sample Database Tables

Appendix A. Sample Database Tables 85

Nicholls Resume
The following text is found in the db200140.asc and db200140.scr files.

Resume: Heather A. Nicholls

Personal Information
Address: 844 Don Mills Ave Mellonville, Idaho 83734
Phone: (208) 555-2310
Birthdate: January 19, 1946
Sex: Female
Marital Status: Single
Height: 5’8″
Weight: 130 lbs.

Department Information
Employee Number: 000140
Dept Number: C01
Manager: Sally Kwan
Position: Analyst
Phone: (208) 555-1793
Hire Date: 1976-12-15

Education

1972 Computer Engineering, Ph.D. University of
Washington

1969 Music and Physics, M.A. Vassar College

Work History

Figure 8. Heather A. Nicholls

Sample Database Tables

86 SQL Getting Started

2/83 - present Architect, OCR Development Designing the
architecture of OCR products.

12/76 - 1/83 Text Programmer Optical character recognition
(OCR) programming in PL/I.

9/72 - 11/76 Punch Card Quality Analyst Checking punch
cards met quality specifications.

Interests
v Model railroading
v Interior decorating
v Embroidery
v Knitting

Adamson Photo

Adamson Resume
The following text is found in the db200150.asc and db200150.scr files.

Resume: Bruce Adamson

Personal Information
Address: 3600 Steeles Ave Mellonville, Idaho 83757
Phone: (208) 555-4489
Birthdate: May 17, 1947
Sex: Male
Marital Status: Married
Height: 6’0″
Weight: 175 lbs.

Department Information

Figure 9. Bruce Adamson

Sample Database Tables

Appendix A. Sample Database Tables 87

Employee Number: 000150
Dept Number: D11
Manager: Irving Stern
Position: Designer
Phone: (208) 555-4510
Hire Date: 1972-02-12

Education

1971 Environmental Engineering, M.Sc. Johns
Hopkins University

1968 American History, B.A. Northwestern
University

Work History

8/79 - present Neural Network Design Developing neural
networks for machine intelligence products.

2/72 - 7/79 Robot Vision Development Developing
rule-based systems to emulate sight.

9/71 - 1/72 Numerical Integration Specialist Helping bank
systems communicate with each other.

Interests
v Racing motorcycles
v Building loudspeakers
v Assembling personal computers
v Sketching

Walker Photo

Figure 10. James H. Walker

Sample Database Tables

88 SQL Getting Started

Walker Resume
The following text is found in the db200190.asc and db200190.scr files.

Resume: James H. Walker

Personal Information
Address: 3500 Steeles Ave Mellonville, Idaho 83757
Phone: (208) 555-7325
Birthdate: June 25, 1952
Sex: Male
Marital Status: Single
Height: 5’11″
Weight: 166 lbs.

Department Information
Employee Number: 000190
Dept Number: D11
Manager: Irving Stern
Position: Designer
Phone: (208) 555-2986
Hire Date: 1974-07-26

Education

1974 Computer Studies, B.Sc. University of
Massachusetts

1972 Linguistic Anthropology, B.A. University of
Toronto

Work History

6/87 - present Microcode Design Optimizing algorithms for
mathematical functions.

4/77 - 5/87 Printer Technical Support Installing and
supporting laser printers.

9/74 - 3/77 Maintenance Programming Patching assembly
language compiler for mainframes.

Interests
v Wine tasting
v Skiing
v Swimming
v Dancing

Sample Database Tables

Appendix A. Sample Database Tables 89

Sample Database Tables

90 SQL Getting Started

Appendix B. Using the DB2 Library

The DB2 Universal Database library consists of online help, books (PDF and
HTML), and sample programs in HTML format. This section describes the
information that is provided, and how you can access it.

To access product information online, you can use the Information Center. For
more information, see “Accessing Information with the Information Center”
on page 105. You can view task information, DB2 books, troubleshooting
information, sample programs, and DB2 information on the Web.

DB2 PDF Files and Printed Books

DB2 Information
The following table divides the DB2 books into four categories:

DB2 Guide and Reference Information
These books contain the common DB2 information for all platforms.

DB2 Installation and Configuration Information
These books are for DB2 on a specific platform. For example, there are
separate Quick Beginnings books for DB2 on OS/2, Windows, and
UNIX-based platforms.

Cross-platform sample programs in HTML
These samples are the HTML version of the sample programs that are
installed with the Application Development Client. The samples are
for informational purposes and do not replace the actual programs.

Release notes
These files contain late-breaking information that could not be
included in the DB2 books.

The installation manuals, release notes, and tutorials are viewable in HTML
directly from the product CD-ROM. Most books are available in HTML on the
product CD-ROM for viewing and in Adobe Acrobat (PDF) format on the DB2
publications CD-ROM for viewing and printing. You can also order a printed
copy from IBM; see “Ordering the Printed Books” on page 101. The following
table lists books that can be ordered.

On OS/2 and Windows platforms, you can install the HTML files under the
sqllib\doc\html directory. DB2 information is translated into different

© Copyright IBM Corp. 1993, 2000 91

languages; however, all the information is not translated into every language.
Whenever information is not available in a specific language, the English
information is provided

On UNIX platforms, you can install multiple language versions of the HTML
files under the doc/%L/html directories, where %L represents the locale. For
more information, refer to the appropriate Quick Beginnings book.

You can obtain DB2 books and access information in a variety of ways:
v “Viewing Information Online” on page 104
v “Searching Information Online” on page 108
v “Ordering the Printed Books” on page 101
v “Printing the PDF Books” on page 100

Table 1. DB2 Information

Name Description Form Number

PDF File Name

HTML
Directory

DB2 Guide and Reference Information

Administration Guide Administration Guide: Planning provides
an overview of database concepts,
information about design issues (such as
logical and physical database design),
and a discussion of high availability.

Administration Guide: Implementation
provides information on implementation
issues such as implementing your
design, accessing databases, auditing,
backup and recovery.

Administration Guide: Performance
provides information on database
environment and application
performance evaluation and tuning.

You can order the three volumes of the
Administration Guide in the English
language in North America using the
form number SBOF-8934.

SC09-2946
db2d1x70

SC09-2944
db2d2x70

SC09-2945
db2d3x70

db2d0

Administrative API
Reference

Describes the DB2 application
programming interfaces (APIs) and data
structures that you can use to manage
your databases. This book also explains
how to call APIs from your applications.

SC09-2947

db2b0x70

db2b0

92 SQL Getting Started

Table 1. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

Application Building
Guide

Provides environment setup information
and step-by-step instructions about how
to compile, link, and run DB2
applications on Windows, OS/2, and
UNIX-based platforms.

SC09-2948

db2axx70

db2ax

APPC, CPI-C, and SNA
Sense Codes

Provides general information about
APPC, CPI-C, and SNA sense codes that
you may encounter when using DB2
Universal Database products.

Available in HTML format only.

No form number

db2apx70

db2ap

Application Development
Guide

Explains how to develop applications
that access DB2 databases using
embedded SQL or Java (JDBC and
SQLJ). Discussion topics include writing
stored procedures, writing user-defined
functions, creating user-defined types,
using triggers, and developing
applications in partitioned environments
or with federated systems.

SC09-2949

db2a0x70

db2a0

CLI Guide and Reference Explains how to develop applications
that access DB2 databases using the DB2
Call Level Interface, a callable SQL
interface that is compatible with the
Microsoft ODBC specification.

SC09-2950

db2l0x70

db2l0

Command Reference Explains how to use the Command Line
Processor and describes the DB2
commands that you can use to manage
your database.

SC09-2951

db2n0x70

db2n0

Connectivity Supplement Provides setup and reference information
on how to use DB2 for AS/400, DB2 for
OS/390, DB2 for MVS, or DB2 for VM as
DRDA application requesters with DB2
Universal Database servers. This book
also details how to use DRDA
application servers with DB2 Connect
application requesters.

Available in HTML and PDF only.

No form number

db2h1x70

db2h1

Appendix B. Using the DB2 Library 93

Table 1. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

Data Movement Utilities
Guide and Reference

Explains how to use DB2 utilities, such
as import, export, load, AutoLoader, and
DPROP, that facilitate the movement of
data.

SC09-2955

db2dmx70

db2dm

Data Warehouse Center
Administration Guide

Provides information on how to build
and maintain a data warehouse using
the Data Warehouse Center.

SC26-9993

db2ddx70

db2dd

Data Warehouse Center
Application Integration
Guide

Provides information to help
programmers integrate applications with
the Data Warehouse Center and with the
Information Catalog Manager.

SC26-9994

db2adx70

db2ad

DB2 Connect User’s Guide Provides concepts, programming, and
general usage information for the DB2
Connect products.

SC09-2954

db2c0x70

db2c0

DB2 Query Patroller
Administration Guide

Provides an operational overview of the
DB2 Query Patroller system, specific
operational and administrative
information, and task information for the
administrative graphical user interface
utilities.

SC09-2958

db2dwx70

db2dw

DB2 Query Patroller
User’s Guide

Describes how to use the tools and
functions of the DB2 Query Patroller.

SC09-2960

db2wwx70

db2ww

Glossary Provides definitions for terms used in
DB2 and its components.

Available in HTML format and in the
SQL Reference.

No form number

db2t0x70

db2t0

Image, Audio, and Video
Extenders Administration
and Programming

Provides general information about DB2
extenders, and information on the
administration and configuration of the
image, audio, and video (IAV) extenders
and on programming using the IAV
extenders. It includes reference
information, diagnostic information
(with messages), and samples.

SC26-9929

dmbu7x70

dmbu7

Information Catalog
Manager Administration
Guide

Provides guidance on managing
information catalogs.

SC26-9995

db2dix70

db2di

94 SQL Getting Started

Table 1. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

Information Catalog
Manager Programming
Guide and Reference

Provides definitions for the architected
interfaces for the Information Catalog
Manager.

SC26-9997

db2bix70

db2bi

Information Catalog
Manager User’s Guide

Provides information on using the
Information Catalog Manager user
interface.

SC26-9996

db2aix70

db2ai

Installation and
Configuration Supplement

Guides you through the planning,
installation, and setup of
platform-specific DB2 clients. This
supplement also contains information on
binding, setting up client and server
communications, DB2 GUI tools, DRDA
AS, distributed installation, the
configuration of distributed requests,
and accessing heterogeneous data
sources.

GC09-2957

db2iyx70

db2iy

Message Reference Lists messages and codes issued by DB2,
the Information Catalog Manager, and
the Data Warehouse Center, and
describes the actions you should take.

You can order both volumes of the
Message Reference in the English
language in North America with the
form number SBOF-8932.

Volume 1
GC09-2978

db2m1x70
Volume 2
GC09-2979

db2m2x70

db2m0

OLAP Integration Server
Administration Guide

Explains how to use the Administration
Manager component of the OLAP
Integration Server.

SC27-0787

db2dpx70

n/a

OLAP Integration Server
Metaoutline User’s Guide

Explains how to create and populate
OLAP metaoutlines using the standard
OLAP Metaoutline interface (not by
using the Metaoutline Assistant).

SC27-0784

db2upx70

n/a

OLAP Integration Server
Model User’s Guide

Explains how to create OLAP models
using the standard OLAP Model
Interface (not by using the Model
Assistant).

SC27-0783

db2lpx70

n/a

OLAP Setup and User’s
Guide

Provides configuration and setup
information for the OLAP Starter Kit.

SC27-0702

db2ipx70

db2ip

OLAP Spreadsheet Add-in
User’s Guide for Excel

Describes how to use the Excel
spreadsheet program to analyze OLAP
data.

SC27-0786

db2epx70

db2ep

Appendix B. Using the DB2 Library 95

Table 1. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

OLAP Spreadsheet Add-in
User’s Guide for Lotus
1-2-3

Describes how to use the Lotus 1-2-3
spreadsheet program to analyze OLAP
data.

SC27-0785

db2tpx70

db2tp

Replication Guide and
Reference

Provides planning, configuration,
administration, and usage information
for the IBM Replication tools supplied
with DB2.

SC26-9920

db2e0x70

db2e0

Spatial Extender User’s
Guide and Reference

Provides information about installing,
configuring, administering,
programming, and troubleshooting the
Spatial Extender. Also provides
significant descriptions of spatial data
concepts and provides reference
information (messages and SQL) specific
to the Spatial Extender.

SC27-0701

db2sbx70

db2sb

SQL Getting Started Introduces SQL concepts and provides
examples for many constructs and tasks.

SC09-2973

db2y0x70

db2y0

SQL Reference, Volume 1
and Volume 2

Describes SQL syntax, semantics, and the
rules of the language. This book also
includes information about
release-to-release incompatibilities,
product limits, and catalog views.

You can order both volumes of the SQL
Reference in the English language in
North America with the form number
SBOF-8933.

Volume 1
SC09-2974

db2s1x70

Volume 2
SC09-2975

db2s2x70

db2s0

System Monitor Guide and
Reference

Describes how to collect different kinds
of information about databases and the
database manager. This book explains
how to use the information to
understand database activity, improve
performance, and determine the cause of
problems.

SC09-2956

db2f0x70

db2f0

Text Extender
Administration and
Programming

Provides general information about DB2
extenders and information on the
administration and configuring of the
text extender and on programming using
the text extenders. It includes reference
information, diagnostic information
(with messages) and samples.

SC26-9930

desu9x70

desu9

96 SQL Getting Started

Table 1. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

Troubleshooting Guide Helps you determine the source of
errors, recover from problems, and use
diagnostic tools in consultation with DB2
Customer Service.

GC09-2850

db2p0x70

db2p0

What’s New Describes the new features, functions,
and enhancements in DB2 Universal
Database, Version 7.

SC09-2976

db2q0x70

db2q0

DB2 Installation and Configuration Information

DB2 Connect Enterprise
Edition for OS/2 and
Windows Quick
Beginnings

Provides planning, migration,
installation, and configuration
information for DB2 Connect Enterprise
Edition on the OS/2 and Windows 32-bit
operating systems. This book also
contains installation and setup
information for many supported clients.

GC09-2953

db2c6x70

db2c6

DB2 Connect Enterprise
Edition for UNIX Quick
Beginnings

Provides planning, migration,
installation, configuration, and task
information for DB2 Connect Enterprise
Edition on UNIX-based platforms. This
book also contains installation and setup
information for many supported clients.

GC09-2952

db2cyx70

db2cy

DB2 Connect Personal
Edition Quick Beginnings

Provides planning, migration,
installation, configuration, and task
information for DB2 Connect Personal
Edition on the OS/2 and Windows 32-bit
operating systems. This book also
contains installation and setup
information for all supported clients.

GC09-2967

db2c1x70

db2c1

DB2 Connect Personal
Edition Quick Beginnings
for Linux

Provides planning, installation,
migration, and configuration information
for DB2 Connect Personal Edition on all
supported Linux distributions.

GC09-2962

db2c4x70

db2c4

DB2 Data Links Manager
Quick Beginnings

Provides planning, installation,
configuration, and task information for
DB2 Data Links Manager for AIX and
Windows 32-bit operating systems.

GC09-2966

db2z6x70

db2z6

Appendix B. Using the DB2 Library 97

Table 1. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

DB2 Enterprise - Extended
Edition for UNIX Quick
Beginnings

Provides planning, installation, and
configuration information for DB2
Enterprise - Extended Edition on
UNIX-based platforms. This book also
contains installation and setup
information for many supported clients.

GC09-2964

db2v3x70

db2v3

DB2 Enterprise - Extended
Edition for Windows Quick
Beginnings

Provides planning, installation, and
configuration information for DB2
Enterprise - Extended Edition for
Windows 32-bit operating systems. This
book also contains installation and setup
information for many supported clients.

GC09-2963

db2v6x70

db2v6

DB2 for OS/2 Quick
Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database on the OS/2
operating system. This book also
contains installation and setup
information for many supported clients.

GC09-2968

db2i2x70

db2i2

DB2 for UNIX Quick
Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database on
UNIX-based platforms. This book also
contains installation and setup
information for many supported clients.

GC09-2970

db2ixx70

db2ix

DB2 for Windows Quick
Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database on Windows
32-bit operating systems. This book also
contains installation and setup
information for many supported clients.

GC09-2971

db2i6x70

db2i6

DB2 Personal Edition
Quick Beginnings

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database Personal
Edition on the OS/2 and Windows 32-bit
operating systems.

GC09-2969

db2i1x70

db2i1

DB2 Personal Edition
Quick Beginnings for
Linux

Provides planning, installation,
migration, and configuration information
for DB2 Universal Database Personal
Edition on all supported Linux
distributions.

GC09-2972

db2i4x70

db2i4

98 SQL Getting Started

Table 1. DB2 Information (continued)

Name Description Form Number

PDF File Name

HTML
Directory

DB2 Query Patroller
Installation Guide

Provides installation information about
DB2 Query Patroller.

GC09-2959

db2iwx70

db2iw

DB2 Warehouse Manager
Installation Guide

Provides installation information for
warehouse agents, warehouse
transformers, and the Information
Catalog Manager.

GC26-9998

db2idx70

db2id

Cross-Platform Sample Programs in HTML

Sample programs in
HTML

Provides the sample programs in HTML
format for the programming languages
on all platforms supported by DB2. The
sample programs are provided for
informational purposes only. Not all
samples are available in all
programming languages. The HTML
samples are only available when the DB2
Application Development Client is
installed.

For more information on the programs,
refer to the Application Building Guide.

No form number db2hs

Release Notes

DB2 Connect Release
Notes

Provides late-breaking information that
could not be included in the DB2
Connect books.

See note #2. db2cr

DB2 Installation Notes Provides late-breaking
installation-specific information that
could not be included in the DB2 books.

Available on
product
CD-ROM only.

DB2 Release Notes Provides late-breaking information about
all DB2 products and features that could
not be included in the DB2 books.

See note #2. db2ir

Notes:

1. The character x in the sixth position of the file name indicates the
language version of a book. For example, the file name db2d0e70 identifies
the English version of the Administration Guide and the file name db2d0f70
identifies the French version of the same book. The following letters are
used in the sixth position of the file name to indicate the language version:

Language Identifier
Brazilian Portuguese b

Appendix B. Using the DB2 Library 99

Bulgarian u
Czech x
Danish d
Dutch q
English e
Finnish y
French f
German g
Greek a
Hungarian h
Italian i
Japanese j
Korean k
Norwegian n
Polish p
Portuguese v
Russian r
Simp. Chinese c
Slovenian l
Spanish z
Swedish s
Trad. Chinese t
Turkish m

2. Late breaking information that could not be included in the DB2 books is
available in the Release Notes in HTML format and as an ASCII file. The
HTML version is available from the Information Center and on the
product CD-ROMs. To view the ASCII file:
v On UNIX-based platforms, see the Release.Notes file. This file is located

in the DB2DIR/Readme/%L directory, where %L represents the locale
name and DB2DIR represents:
– /usr/lpp/db2_07_01 on AIX
– /opt/IBMdb2/V7.1 on HP-UX, PTX, Solaris, and Silicon Graphics

IRIX
– /usr/IBMdb2/V7.1 on Linux.

v On other platforms, see the RELEASE.TXT file. This file is located in the
directory where the product is installed. On OS/2 platforms, you can
also double-click the IBM DB2 folder and then double-click the Release
Notes icon.

Printing the PDF Books
If you prefer to have printed copies of the books, you can print the PDF files
found on the DB2 publications CD-ROM. Using the Adobe Acrobat Reader,
you can print either the entire book or a specific range of pages. For the file
name of each book in the library, see Table 1 on page 92.

100 SQL Getting Started

You can obtain the latest version of the Adobe Acrobat Reader from the
Adobe Web site at http://www.adobe.com.

The PDF files are included on the DB2 publications CD-ROM with a file
extension of PDF. To access the PDF files:
1. Insert the DB2 publications CD-ROM. On UNIX-based platforms, mount

the DB2 publications CD-ROM. Refer to your Quick Beginnings book for
the mounting procedures.

2. Start the Acrobat Reader.
3. Open the desired PDF file from one of the following locations:

v On OS/2 and Windows platforms:
x:\doc\language directory, where x represents the CD-ROM drive and
language represent the two-character country code that represents your
language (for example, EN for English).

v On UNIX-based platforms:
/cdrom/doc/%L directory on the CD-ROM, where /cdrom represents the
mount point of the CD-ROM and %L represents the name of the desired
locale.

You can also copy the PDF files from the CD-ROM to a local or network drive
and read them from there.

Ordering the Printed Books

You can order the printed DB2 books either individually or as a set (in North
America only) by using a sold bill of forms (SBOF) number. To order books,
contact your IBM authorized dealer or marketing representative, or phone
1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada. You can
also order the books from the Publications Web page at
http://www.elink.ibmlink.ibm.com/pbl/pbl.

Two sets of books are available. SBOF-8935 provides reference and usage
information for the DB2 Warehouse Manager. SBOF-8931 provides reference
and usage information for all other DB2 Universal Database products and
features. The contents of each SBOF are listed in the following table:

Appendix B. Using the DB2 Library 101

Table 2. Ordering the printed books

SBOF Number Books Included

SBOF-8931 v Administration Guide: Planning

v Administration Guide: Implementation

v Administration Guide: Performance

v Administrative API Reference

v Application Building Guide

v Application Development Guide

v CLI Guide and Reference

v Command Reference

v Data Movement Utilities Guide and
Reference

v Data Warehouse Center Administration
Guide

v Data Warehouse Center Application
Integration Guide

v DB2 Connect User’s Guide

v Installation and Configuration
Supplement

v Image, Audio, and Video Extenders
Administration and Programming

v Message Reference, Volumes 1 and 2

v OLAP Integration Server
Administration Guide

v OLAP Integration Server Metaoutline
User’s Guide

v OLAP Integration Server Model User’s
Guide

v OLAP Integration Server User’s Guide

v OLAP Setup and User’s Guide

v OLAP Spreadsheet Add-in User’s
Guide for Excel

v OLAP Spreadsheet Add-in User’s
Guide for Lotus 1-2-3

v Replication Guide and Reference

v Spatial Extender Administration and
Programming Guide

v SQL Getting Started

v SQL Reference, Volumes 1 and 2

v System Monitor Guide and Reference

v Text Extender Administration and
Programming

v Troubleshooting Guide

v What’s New

SBOF-8935 v Information Catalog Manager
Administration Guide

v Information Catalog Manager User’s
Guide

v Information Catalog Manager
Programming Guide and Reference

v Query Patroller Administration Guide

v Query Patroller User’s Guide

DB2 Online Documentation

Accessing Online Help
Online help is available with all DB2 components. The following table
describes the various types of help.

102 SQL Getting Started

Type of Help Contents How to Access...

Command Help Explains the syntax of
commands in the command
line processor.

From the command line processor in interactive
mode, enter:

? command

where command represents a keyword or the entire
command.

For example, ? catalog displays help for all the
CATALOG commands, while ? catalog database
displays help for the CATALOG DATABASE
command.

Client Configuration
Assistant Help

Command Center
Help

Control Center Help

Data Warehouse
Center Help

Event Analyzer Help

Information Catalog
Manager Help

Satellite
Administration
Center Help

Script Center Help

Explains the tasks you can
perform in a window or
notebook. The help includes
overview and prerequisite
information you need to
know, and it describes how
to use the window or
notebook controls.

From a window or notebook, click the Help push
button or press the F1 key.

Appendix B. Using the DB2 Library 103

Type of Help Contents How to Access...

Message Help Describes the cause of a
message and any action you
should take.

From the command line processor in interactive
mode, enter:

? XXXnnnnn

where XXXnnnnn represents a valid message
identifier.

For example, ? SQL30081 displays help about the
SQL30081 message.

To view message help one screen at a time, enter:

? XXXnnnnn | more

To save message help in a file, enter:

? XXXnnnnn > filename.ext

where filename.ext represents the file where you
want to save the message help.

SQL Help Explains the syntax of SQL
statements.

From the command line processor in interactive
mode, enter:

help statement

where statement represents an SQL statement.

For example, help SELECT displays help about the
SELECT statement.
Note: SQL help is not available on UNIX-based
platforms.

SQLSTATE Help Explains SQL states and
class codes.

From the command line processor in interactive
mode, enter:

? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL
state and class code represents the first two digits
of the SQL state.

For example, ? 08003 displays help for the 08003
SQL state, while ? 08 displays help for the 08 class
code.

Viewing Information Online
The books included with this product are in Hypertext Markup Language
(HTML) softcopy format. Softcopy format enables you to search or browse the
information and provides hypertext links to related information. It also makes
it easier to share the library across your site.

104 SQL Getting Started

You can view the online books or sample programs with any browser that
conforms to HTML Version 3.2 specifications.

To view online books or sample programs:
v If you are running DB2 administration tools, use the Information Center.
v From a browser, click File —>Open Page. The page you open contains

descriptions of and links to DB2 information:
– On UNIX-based platforms, open the following page:

INSTHOME/sqllib/doc/%L/html/index.htm

where %L represents the locale name.
– On other platforms, open the following page:

sqllib\doc\html\index.htm

The path is located on the drive where DB2 is installed.

If you have not installed the Information Center, you can open the page
by double-clicking the DB2 Information icon. Depending on the system
you are using, the icon is in the main product folder or the Windows
Start menu.

Installing the Netscape Browser
If you do not already have a Web browser installed, you can install Netscape
from the Netscape CD-ROM found in the product boxes. For detailed
instructions on how to install it, perform the following:
1. Insert the Netscape CD-ROM.
2. On UNIX-based platforms only, mount the CD-ROM. Refer to your Quick

Beginnings book for the mounting procedures.
3. For installation instructions, refer to the CDNAVnn.txt file, where nn

represents your two character language identifier. The file is located at the
root directory of the CD-ROM.

Accessing Information with the Information Center
The Information Center provides quick access to DB2 product information.
The Information Center is available on all platforms on which the DB2
administration tools are available.

You can open the Information Center by double-clicking the Information
Center icon. Depending on the system you are using, the icon is in the
Information folder in the main product folder or the Windows Start menu.

You can also access the Information Center by using the toolbar and the Help
menu on the DB2 Windows platform.

Appendix B. Using the DB2 Library 105

The Information Center provides six types of information. Click the
appropriate tab to look at the topics provided for that type.

Tasks Key tasks you can perform using DB2.

Reference DB2 reference information, such as keywords, commands, and
APIs.

Books DB2 books.

Troubleshooting
Categories of error messages and their recovery actions.

Sample Programs
Sample programs that come with the DB2 Application
Development Client. If you did not install the DB2
Application Development Client, this tab is not displayed.

Web DB2 information on the World Wide Web. To access this
information, you must have a connection to the Web from
your system.

When you select an item in one of the lists, the Information Center launches a
viewer to display the information. The viewer might be the system help
viewer, an editor, or a Web browser, depending on the kind of information
you select.

The Information Center provides a find feature, so you can look for a specific
topic without browsing the lists.

For a full text search, follow the hypertext link in the Information Center to
the Search DB2 Online Information search form.

The HTML search server is usually started automatically. If a search in the
HTML information does not work, you may have to start the search server
using one of the following methods:

On Windows
Click Start and select Programs —> IBM DB2 —> Information —>
Start HTML Search Server.

On OS/2
Double-click the DB2 for OS/2 folder, and then double-click the Start
HTML Search Server icon.

Refer to the release notes if you experience any other problems when
searching the HTML information.

Note: The Search function is not available in the Linux, PTX, and Silicon
Graphics IRIX environments.

106 SQL Getting Started

Using DB2 Wizards
Wizards help you complete specific administration tasks by taking you
through each task one step at a time. Wizards are available through the
Control Center and the Client Configuration Assistant. The following table
lists the wizards and describes their purpose.

Note: The Create Database, Create Index, Configure Multisite Update, and
Performance Configuration wizards are available for the partitioned
database environment.

Wizard Helps You to... How to Access...

Add Database Catalog a database on a client workstation. From the Client Configuration
Assistant, click Add.

Backup Database Determine, create, and schedule a backup
plan.

From the Control Center, right-click
the database you want to back up
and select Backup —> Database
Using Wizard.

Configure Multisite
Update

Configure a multisite update, a distributed
transaction, or a two-phase commit.

From the Control Center, right-click
the Databases folder and select
Multisite Update.

Create Database Create a database, and perform some basic
configuration tasks.

From the Control Center, right-click
the Databases folder and select
Create —> Database Using
Wizard.

Create Table Select basic data types, and create a primary
key for the table.

From the Control Center, right-click
the Tables icon and select Create
—> Table Using Wizard.

Create Table Space Create a new table space. From the Control Center, right-click
the Table Spaces icon and select
Create —> Table Space Using
Wizard.

Create Index Advise which indexes to create and drop for
all your queries.

From the Control Center, right-click
the Index icon and select Create
—> Index Using Wizard.

Performance
Configuration

Tune the performance of a database by
updating configuration parameters to match
your business requirements.

From the Control Center, right-click
the database you want to tune and
select Configure Performance
Using Wizard.

For the partitioned database
environment, from the Database
Partitions view, right-click the first
database partition you want to
tune and select Configure
Performance Using Wizard.

Appendix B. Using the DB2 Library 107

Wizard Helps You to... How to Access...

Restore Database Recover a database after a failure. It helps
you understand which backup to use, and
which logs to replay.

From the Control Center, right-click
the database you want to restore
and select Restore —> Database
Using Wizard.

Setting Up a Document Server
By default, the DB2 information is installed on your local system. This means
that each person who needs access to the DB2 information must install the
same files. To have the DB2 information stored in a single location, perform
the following steps:
1. Copy all files and subdirectories from \sqllib\doc\html on your local

system to a Web server. Each book has its own subdirectory that contains
all the necessary HTML and GIF files that make up the book. Ensure that
the directory structure remains the same.

2. Configure the Web server to look for the files in the new location. For
information, refer to the NetQuestion Appendix in the Installation and
Configuration Supplement.

3. If you are using the Java version of the Information Center, you can
specify a base URL for all HTML files. You should use the URL for the list
of books.

4. When you are able to view the book files, you can bookmark commonly
viewed topics. You will probably want to bookmark the following pages:
v List of books
v Tables of contents of frequently used books
v Frequently referenced articles, such as the ALTER TABLE topic
v The Search form

For information about how you can serve the DB2 Universal Database online
documentation files from a central machine, refer to the NetQuestion
Appendix in the Installation and Configuration Supplement.

Searching Information Online
To find information in the HTML files, use one of the following methods:
v Click Search in the top frame. Use the search form to find a specific topic.

This function is not available in the Linux, PTX, or Silicon Graphics IRIX
environments.

v Click Index in the top frame. Use the index to find a specific topic in the
book.

v Display the table of contents or index of the help or the HTML book, and
then use the find function of the Web browser to find a specific topic in the
book.

108 SQL Getting Started

v Use the bookmark function of the Web browser to quickly return to a
specific topic.

v Use the search function of the Information Center to find specific topics. See
“Accessing Information with the Information Center” on page 105 for
details.

Appendix B. Using the DB2 Library 109

110 SQL Getting Started

Appendix C. Notices

IBM may not offer the products, services, or features discussed in this
document in all countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make

© Copyright IBM Corp. 1993, 2000 111

improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Canada Limited
Office of the Lab Director
1150 Eglinton Ave. East
North York, Ontario
M3C 1H7
CANADA

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equivalent
agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

112 SQL Getting Started

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source
language, which illustrates programming techniques on various operating
platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using,
marketing or distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM
Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_. All
rights reserved.

Appendix C. Notices 113

Trademarks

The following terms, which may be denoted by an asterisk(*), are trademarks
of International Business Machines Corporation in the United States, other
countries, or both.

ACF/VTAM
AISPO
AIX
AIX/6000
AIXwindows
AnyNet
APPN
AS/400
BookManager
CICS
C Set++
C/370
DATABASE 2
DataHub
DataJoiner
DataPropagator
DataRefresher
DB2
DB2 Connect
DB2 Extenders
DB2 OLAP Server
DB2 Universal Database
Distributed Relational

Database Architecture
DRDA
eNetwork
Extended Services
FFST
First Failure Support Technology

IBM
IMS
IMS/ESA
LAN DistanceMVS
MVS/ESA
MVS/XA
Net.Data
OS/2
OS/390
OS/400
PowerPC
QBIC
QMF
RACF
RISC System/6000
RS/6000
S/370
SP
SQL/DS
SQL/400
System/370
System/390
SystemView
VisualAge
VM/ESA
VSE/ESA
VTAM
WebExplorer
WIN-OS/2

The following terms are trademarks or registered trademarks of other
companies:

Microsoft, Windows, and Windows NT are trademarks or registered
trademarks of Microsoft Corporation.

Java or all Java-based trademarks and logos, and Solaris are trademarks of
Sun Microsystems, Inc. in the United States, other countries, or both.

Tivoli and NetView are trademarks of Tivoli Systems Inc. in the United States,
other countries, or both.

114 SQL Getting Started

UNIX is a registered trademark in the United States, other countries or both
and is licensed exclusively through X/Open Company Limited.

Other company, product, or service names, which may be denoted by a
double asterisk(**) may be trademarks or service marks of others.

Appendix C. Notices 115

116 SQL Getting Started

Index

A
ADD CONSTRAINT statement 53
add database wizard 107, 108
Administration Guide v
ALL, using in a query 50
ALTER TABLE statement 53
ANY keyword 50
Application Development Guide v
arithmetic operators 25
AS clause 25
authorization ID 4

B
backup database wizard 107
base table 3
BETWEEN predicate 48
BIGINT, data type 5
binary integer, description 5
BLOB data type 67
BLOB string 67
books 91, 101

C
case expression

description 34
SIGN function 34

casting data types
description 33

CHAR, data type 5
character string

as data type 5
fixed length 5
varying length 5

CL_SCHED sample table 72
CLOB data type 67
CLOB string 67
column

ASC, ascending order sort 23
definition of 3
DESC, descending order sort 23

column function 28
AVG 28
COUNT 28
MAX 28
MIN 28

column functions 28
combining, queries 45
command line processor 1
common table expression

description 36

comparison operator used in a
subquery 50

composite key 51
configure multisite update

wizard 107
CONNECT statement 18

explicit 18
implicit 18

connecting queries 47
constraints

referential constraints 9
unique constraints 9

correlated reference, description 39
correlated subquery

description 39
when to use 41

correlation
description 38
name 40
subqueries using joins 42
subquery 39

correlation-name
qualified reference of column

name 38
rules for 38

create database wizard 107
CREATE DISTINCT TYPE 65
CREATE FUNCTION 66
create table space wizard 107
CREATE TABLE statement 9

NOT NULL/NOT NULL WITH
DEFAULT value for column 9

create table wizard 107
CREATE TRIGGER 54
CREATE VIEW statement 13

WITH CHECK OPTION 13
creating the sample database 72
cross product 58
cross-tabulation rows 62
CUBE 62

cross-tabulation rows 62
sub-total rows 62

CURRENT DATE special
register 68

CURRENT FUNCTION PATH
special register 68

CURRENT SERVER special
register 68

CURRENT TIME special register 68

CURRENT TIMESTAMP special
register 68

CURRENT TIMEZONE special
register 68

D
data conversion

join conditions 60
set operators 47

data structure
column 3
row 3
value 3

data type
distinct 65

data types
BIGINT 5
CHAR 5
DATE 5
DATETIME 5
DECIMAL 5
DOUBLE 5
FLOAT 5
INTEGER 5
REAL 5
SMALLINT 5
TIME 5
TIMESTAMP 5
VARCHAR 5

database manager 1
DATE, data type 5
DATETIME, data type 5
datetime values, description 5
DB2 library

books 91
Information Center 105
language identifier for books 99
late-breaking information 100
online help 102
ordering printed books 101
printing PDF books 100
searching online

information 108
setting up document server 108
structure of 91
viewing online information 104
wizards 107

DBLOB data type 67
DBLOB string 67
DECIMAL, data type 5

© Copyright IBM Corp. 1993, 2000 117

decimal, description 5
DELETE statement 12
DEPARTMENT sample table 73
distinct data type 65
DISTINCT keyword 24, 29
DOUBLE, data type 5

E
EMP_ACT sample table 76
EMP_PHOTO sample table 78
EMP_RESUME sample table 78
EMPLOYEE sample table 73
erasing the sample database 72
error messages

message identifier 18
SQLSCODE 18
SQLSTATE 18

EXCEPT ALL 46
EXCEPT operator 46

ordering results 47
usage restrictions involving 47

data types 47
EXISTS predicate 49
expressions 25
expressions, naming 25
external scalar function 66
external table function 66

F
FLOAT, data type 5
foreign key 52
FROM clause 19
FULL OUTER join 58
fullselect 33

ALL keyword 50
ANY keyword 50
subquery 10, 50
with INSERT statement 10

fullselect, definition 10
function

built-in 28
column 28
description 28
online analytical processing

(OLAP) 63
scalar 28
table 30
user-defined 28

G
graphic string

fixed length 5
varying length 5

GROUP BY 24
GROUP BY clause

grouping column 30

GROUP BY clause (continued)
with HAVING clause 32

grouping column, definition 30

H
HAVING 24
HAVING clause

description 32
HTML

sample programs 99

I
IN predicate 48
IN_TRAY sample table 79
index wizard 107
Information Center 105
inner join 58
INSERT statement 10

NOT NULL/NOT NULL WITH
DEFAULT value for
column 10

installing
Netscape browser 105

INTEGER, data type 5
interactive SQL, definition 1
INTERSECT ALL 47
INTERSECT operator 47

ordering results 47
usage restrictions involving 47

data types 47

J
join

correlated subqueries 42
cross product 58
data conversion 60
definition 26
join conditions 58
without join conditions 58

join condition 58

K
key

composite 51
definition 51
foreign 52
primary 52
unique 52

L
language identifier

books 99
large object location, definition 67
late-breaking information 100
LEFT OUTER join 58
LIKE predicate 49

LOB
locator, definition 67
string, definition 67

locator 67

M
merging results of queries 45
modifying tables through a view 15

WITH CHECK OPTION 15
multiple node relational database,

definition 1

N
nested table expressions,

description 36
nesting correlated subqueries 42
Netscape browser

installing 105
NOT BETWEEN predicate 48
NOT EXISTS predicate 49
NOT IN predicate 48
NOT LIKE predicate 49
null value 45

delete column value 12
null value, description 5
numbers, description 5

O
OLAP functions 63

aggregate group 63
ordering rows in 63
partitioning rows in 63

OLE DB external table function 66
online analytical processing 63
online help 102
online information

searching 108
viewing 104

ORDER BY clause 22
set operators 47

order of operations 24, 28
ORG sample table 79
outer join

description 58
FULL OUTER join 58
LEFT OUTER join 58
RIGHT OUTER join 58

outer-level predicate 50
outer-level query, correlation 41

P
parent key, definition 52
partitioned relational database,

definition 1
PDF 100
performance configuration

wizard 107

118 SQL Getting Started

precision, as a numeric attribute 5
predicate

IS NOT NULL 20
IS NULL 20

primary key 52
printing PDF books 100
PROJECT sample table 80

Q
qualifying objects 4, 17
queries, connecting 47
Quick Beginnings v

R
REAL, data type 5
recursive queries, description 63
referential integrity constraints

definition 51
description 52
foreign key 52
parent key 52

Related Documentation v
relational database, definition 1
relationship between tables and

views 13
release notes 100
removing duplicate rows 24
reserved schemas 4
restore wizard 107
restrictions

for set operators 47
result table 3
retrieving data 19
RIGHT OUTER join 58
ROLL-UP

sub-total rows 62
ROLLUP 62
row

definition of 3
selecting 20

S
SALES sample table 81
sample database

creating 72
erasing 72

Sample Database 71
sample programs

cross-platform 99
HTML 99

sample tables 71, 91
scalar fullselects

description 33
scalar function 28

DECIMAL 36

Scalar function
ABS 29
HEX 29
LENGTH 29
SIGN 29
YEAR 29

schema
definition of 4

search condition 20
searching

online information 106, 108
select list 19
SELECT statement 19
SET clause

with UPDATE statement 12
SET CONSTRAINTS statement 53
setting up document server 108
sign, as a numeric attribute 5
SMALLINT, data type 5
SmartGuides

wizards 107
SOME keyword 50
sorting rows 22
sourced function 66
special register 68

CURRENT DATE 68
CURRENT DEGREE 68
CURRENT FUNCTION

PATH 68
CURRENT PATH 68
CURRENT SERVER 68
CURRENT TIME 68
CURRENT TIMESTAMP 68
CURRENT TIMEZONE 68
USER 68

SQL procedure language v
SQL Reference v
STAFF sample table 82
STAFFG sample table 83
string

LOB 67
Structured Query Language (SQL),

definition 1
sub-total rows 62
subquery

definition 27
system catalogs 69

T
table

base table 3
combine data (join) 26
definition of 3
foreign key 52
functions 30
primary key 52

table (continued)
qualifying a column name 38
result table 3
Sample Database 71
unique constraint 52
unique key 52

table check constraints
deferred constraint checking 53
definition 51
description 53

table expressions
description 35

table function
SQLCACHE_SNAPSHOT 30

testing, existence 49
testing for existence 49
TIME, data type 5
TIMESTAMP, data type 5
triggers

after trigger 54
before trigger 54
CREATE TRIGGER 54
definition 51
description 54
transition variables 56

U
UNION ALL 45
UNION operator 45, 46

description 45
ordering results 46
usage restrictions involving 47

data types 47
unique constraint 52
unique constraints

definition 51
unique key 52

unique constraint 52
UPDATE statement 12
user-defined functions 66

defining 66
external scalar function 66
external table function 66
OLE DB external table

function 66
sourced function 66

USER special register 68

V
value

definition of 3
value in SQL 5
VALUES clause

with INSERT statement 10
VARCHAR, data type 5

Index 119

view

qualifying a column name 38

View

advantages 4
description 4

viewing

online information 104

W
WHERE clause 20

combine table data (join) in
SELECT statement 26

grouping considerations 31

WITH CHECK OPTION 15

WITH clause 36

wizards

add database 107, 108
backup database 107
completing tasks 107
configure multisite update 107
create database 107
create table 107
create table space 107
index 107
performance configuration 107
restore database 107

120 SQL Getting Started

Contacting IBM

If you have a technical problem, please review and carry out the actions
suggested by the Troubleshooting Guide before contacting DB2 Customer
Support. This guide suggests information that you can gather to help DB2
Customer Support to serve you better.

For information or to order any of the DB2 Universal Database products
contact an IBM representative at a local branch office or contact any
authorized IBM software remarketer.

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-237-5511 for customer support
v 1-888-426-4343 to learn about available service options

Product Information

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-IBM-CALL (1-800-426-2255) or 1-800-3IBM-OS2 (1-800-342-6672) to

order products or get general information.
v 1-800-879-2755 to order publications.

http://www.ibm.com/software/data/
The DB2 World Wide Web pages provide current DB2 information
about news, product descriptions, education schedules, and more.

http://www.ibm.com/software/data/db2/library/
The DB2 Product and Service Technical Library provides access to
frequently asked questions, fixes, books, and up-to-date DB2 technical
information.

Note: This information may be in English only.

http://www.elink.ibmlink.ibm.com/pbl/pbl/
The International Publications ordering Web site provides information
on how to order books.

http://www.ibm.com/education/certify/
The Professional Certification Program from the IBM Web site
provides certification test information for a variety of IBM products,
including DB2.

© Copyright IBM Corp. 1993, 2000 121

ftp.software.ibm.com
Log on as anonymous. In the directory /ps/products/db2, you can
find demos, fixes, information, and tools relating to DB2 and many
other products.

comp.databases.ibm-db2, bit.listserv.db2-l
These Internet newsgroups are available for users to discuss their
experiences with DB2 products.

On Compuserve: GO IBMDB2
Enter this command to access the IBM DB2 Family forums. All DB2
products are supported through these forums.

For information on how to contact IBM outside of the United States, refer to
Appendix A of the IBM Software Support Handbook. To access this
document, go to the following Web page: http://www.ibm.com/support/,
and then select the IBM Software Support Handbook link near the bottom of
the page.

Note: In some countries, IBM-authorized dealers should contact their dealer
support structure instead of the IBM Support Center.

122 SQL Getting Started

����

Part Number: CT7YHNA

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC09-2973-00

CT
7Y

HN
A

